Life of a Password

Arvind Mani
Data & Infrastructure Security
LinkedIn



See the Big Picture

'.---- VT aea. -ra

Secure user account.



Agenda

We cover the following topics:
* Hashing

* Transport

* Storage

Not covered:

monitoring, host and network security, access
control, other account protection mechanisms.



Unsalted Password Hash

m1 F(“monkey”)
m2 F(“123456")

* Brute force short passwords
* Dictionary attack
* Rainbow Table



Salted Password Hashes

Cheap Salt (performance; what’s wrong?)

m1 F(“monkey”, m1)
m?2 F(“123456”, m2)

Random Salt

Userid __________lhash______________salt(64/96bit

m1 F(“JIbaerwhm”, s1) sl
m2 F(“SA%YRTYFYU”, s2) s2

Susceptible to Targeted attack



Keyed Crypto Hash (MAC)

m1 F(“JIbaerwhm”, “secret”)
m?2 F(“SA%YRTYFYU”, “secret”)

* Prevents dictionary attack
e Common passwords are revealed
* Prevents targeted attack

Next: Online attacks



Overwrite Attack

m1 F(“ashjrgqwu3nk”, s1) s2
m2 F(“%RYThj#WY”, s2) s2

m1 F(“password”, s) S

m?2 F(“password”, s) S

Attacker overwrites m1 and m2’s real
passwords



Swap Attack

m1 F(“password”, s1, “secret”) sl
m?2 F(“SA%YRTYFYU”, s2, “secret”) s2

m1 (attacker) F(“password”, s1, “secret”) sl >

m2 (victim) F(“password”, s1, “secret” sl



Keyed Hash

Pros
* One-way
* Correlated input secure

Cons
 Hash computation is fast
* Fixed input, fixed output



Password Recipe

Key Derivation Function (KDF) instead of
crypto hash

Random salt

User or member id

Work factor (active accounts)
Application secret

Encrypted Hashes vs MAC



Ongoing Key Rotation

* Increase likelihood that not all stored
credentials can be cracked.

* You have fingerprinted your database — stolen
hashes can pinpoint “when”



Except if...

Password History Table

m1 F(“password”, s1, m1, sl
“secret”)

Password Table

F(“7%STRsfwe”, s2, m1, s2
“secret”)



Accidental Logging

registration " backend

frontend systems

S/

Logs

2014/02/25 18:38:55.751 [(prod-host1,login-app,/login,2014/02/25
18:38:55.572) verifyPassword(email=“foobar@yahoo.com”, password=monkey,
ip_address="1.1.1.1"), PASS, 11ms






User
agent

Transport

—

A

TLS

Frontend

a

TLS

h 4

Login Server

e TLS throughout, so on network password is always encrypted
* Each hop sees password in clear — potential for improper handling



Fix at User Agent — Attempt 1

Send Hash(password)

2. read entry for userl,
userl,

_ “ ” . say Y
e H=shal(“abc123”) ~ Login
TLS Server 3 |sY ==
AES(PBKDF2(H))?

* Equation in Step 3 holds if the shal is done consistently
during registration, password reset, etc

* Problem — hashed password log is as bad as logging
cleartext password!



Fix at User Agent — Attempt 2

Send Hash(password, salt)

2. read entry for userl,

userl, H'=shal(“abc123”,
say Y

a— randl) ~ Login

TLS Server 3 |sY ==
AES(PBKDF2(H’))?

e Salt used in computing Y using PBKDF2 can’t be same as
randl

* Problem - Equation in Step 3 can’t hold for any verification,
scheme not feasible



Fix At User Agent — Attempt 3

Send PublicKeyEncryption(password)

userl,
Y=PubKeyEnc(“abc

Web app logs userl, Y
and contents are
leaked to outside

i

Problem — Can replay and use encrypted password
instead of real password to login as user



Fix At User Agent - Summary

Send PublicKeyEncryption(password) + nonce
* Good news — this finally works!

* Bad news — must support all user agents

including native mobile, some clients can’t be
upgraded



Fix at Ingress — Attempt 1

Instead of sending password, over TLS send
either:

* Hash(password, salt)
e Password token not derived from password



Fix at Ingress — Attempt 2

PublicKeyEncryption(password)

userl’ Userl,
‘ “abc123” Y=PubKeyEnc(“abc
2. userl,
RSA(Y)

userl, Yis

2.userl, Y
leaked

No replay from outside, can replay from inside
network



Cloaked Password

Password encrypted PublicKey, g server
Ciphertext is randomized

Replay protection via short expiry or nonce
infrastructure

Can be decrypted only by verification end
point



Storage

* SQL injection

» Attacker has username/password of database
e Attacker has access to filesystem



Dump credentials

e SQL injection (nosql stores are not by default safe)

& il -

password=‘foo’ or 1=1 --
e Attacker with DB credential

select * from >

- —




Centralizing Storage

* Many types of credentials — isolate application
credentials

passwords
oauth tokens

* Single point of attack

i i




Credential Store

Access via Stored Procedure

Isolate client data via dual encryption
Access Control

Auditing

Monitoring

Periodic key rotation



Credential Store

id1,Y=E_.. (password)

login

id1, Z= E_.4(Y)

* listener access

id1, IP restricted to
Y=E,;(accessToken) cred service

* Access via

Stored procs
e All communication over TLS

* ACLs on operations
e Client encryption



Summary

* Made some progress securing passwords

e Re-usable infrastructure — apply to credit
cards, OAuth tokens, etc

 Future Work — Key Management, SRP?,
mitigate risk of compromise of critical
applications



Acknowledgement

We want to thank Professor Dan Boneh, Applied
Crypto Group, Stanford University for his help
with password hashing scheme.



Questions?

amani@linkedin.com

https://www.linkedin.com/in/arvindmani



