

Authenticated Encryption and the CAESAR Competition

Elena Andreeva COSIC, KU Leuven, Belgium

Real World Cryptography Workshop 2015 London, UK 08/01/2015

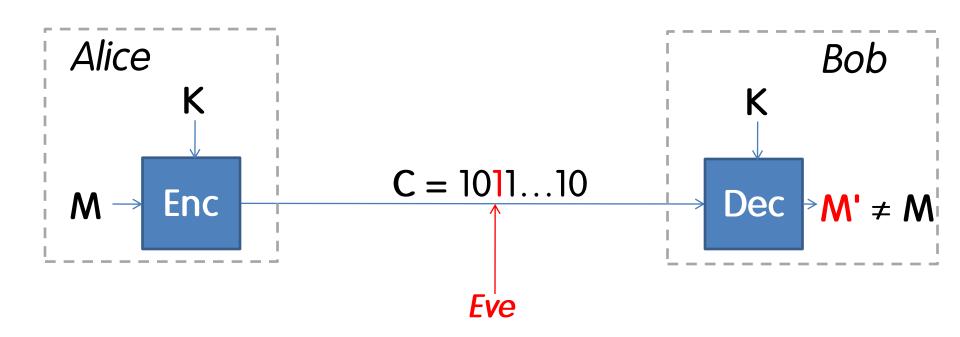
Security Goal

Authenticated Encryption (AE) Scheme

Confidentiality + Authenticity

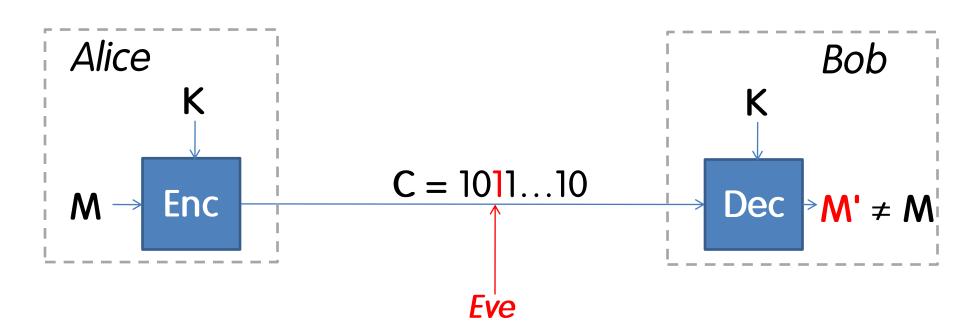
Confidentiality

Traditionally


Encryption Scheme - Confidentiality: Ind CPA/CCA

Confidentiality

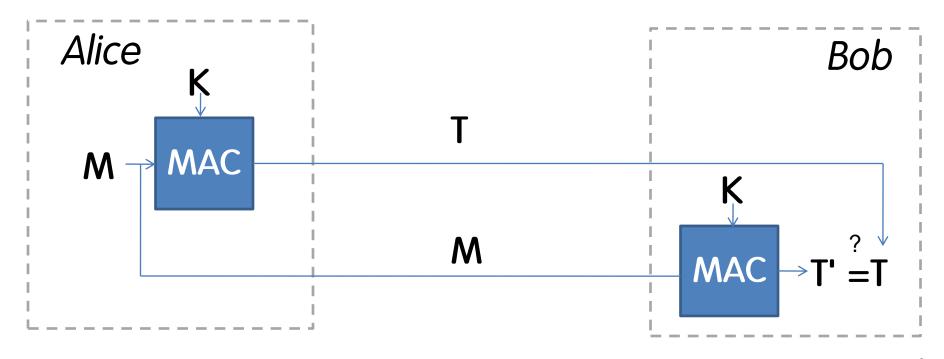
Traditionally


Encryption Scheme - Confidentiality: Ind CPA/CCA

Confidentiality

Traditionally

Encryption Scheme → Confidentiality ≠ Authenticity



Authenticity

Traditionally

Message Authentication Code (MAC)

Authenticity: UF-CMA

Security Goal

Traditionally

Encryption Scheme

Confidentiality: Ind CPA/CCA

Message Authentication Code (MAC)

Authenticity: UF-CMA

Nowadays

Authenticated Encryption (AE) Scheme

Confidentiality + Authenticity Ind CPA + Int-Ctxt

Main Question

How to achieve secure AE?

- 1. Combine Enc + MAC
 - Generic composition:
 - Bellare, Namprempre (2000), Namprempre et al. (2014)
- 2. Dedicated AE schemes ≈ Inbetweeners ©
 State of the art

Generic Composition Bellare, Namprempre (2000), Krawczyk (2001)

1. Encrypt and MAC Insecure

2. MAC then Encrypt Insecure

3. Encrypt then MAC Secure

Build probabilistic AE from probabilistic Enc

- Enc IV is random/state
- IV/state is communicated in-band

Generic Composition

1. Encrypt and MAC SSH

[APW'09] OpenSSH attack: bad Enc and MAC interaction Timing attacks, ...

2. MAC then Encrypt TLS

In-model attack: BEAST [DR'11]! (SSL 3.0,TLS 1.0) CBC chaining IV

Repair: TLS 1.1 and 1.2: random IV-CBC [K'01]

Out-of-model attacks: Padding oracle [V02,CHVV03],

Lucky 13 [AP'13]: SSLv3.0, TLS 1.0, 1.1, 1.2., DTLS

3. Encrypt then MAC IPsec, ISO/IEC 19772:2009

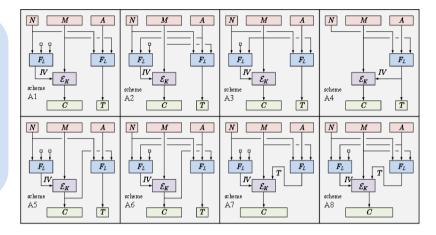
ISO 19772 Enc then MAC?

... choose appropriate "starting variable" (SV = IV) for Enc $C' = C \parallel T$ where $C = Enc_{K1}(M)$ and $T = f_{K2}(C)$...

1. Appropriate?

- distinct for every M during the lifetime of a key
 Nonce? → Attack
- Chosen statistically unique SV is recommended Random? → OK

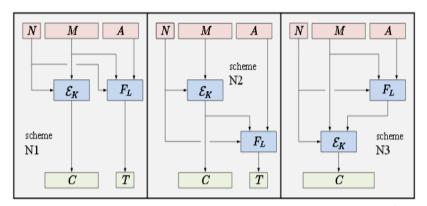
2. Is SV part of C?


no → Attack (for any SV choice)

Generic Composition Reconsidered Namprempre et al. (2014)

1. IV (random)-Enc + MAC

Nonce-based AE from IV-Enc

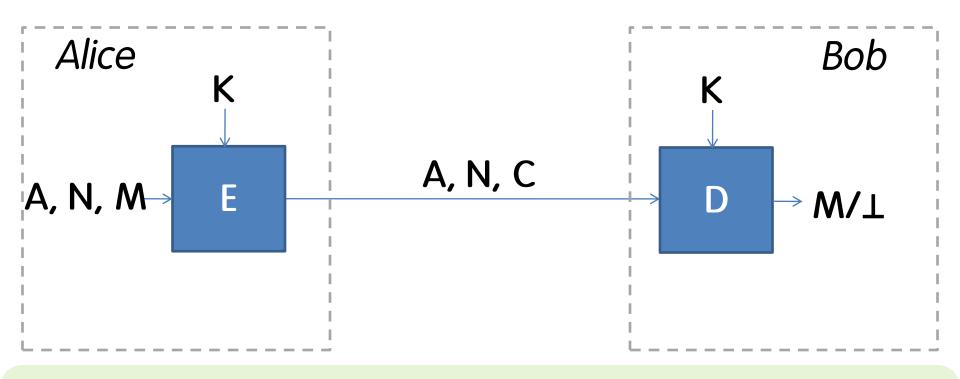

- IV is random (externally generated)
- IV is communicated in-band

2. N (Nonce)-Enc + MAC

Nonce-based AE from N-Enc

- IV is an unique number
- IV is communicated in-band

Other Ways to Build AE Schemes?


1. Generic AE composition

- + combines off the shelf primitives
- prone to implementation errors
- 2 data passes
- 2 keys

2. Dedicated AE schemes

nonce-based (randomness is not required)

Nonce-based AE

Nonce dependent AE: Security fails when N repeats Nonce MR AE: Provide security when N repeats

Dedicated AE (Prior to CAESAR)

Primitive	Nonce dependent	Nonce MR
Block cipher	IAPM*, OCB*, XECB*, CCM, GCM, OTR*, CLOC	SIV, BTM, McOE-G, POET, COPA
Permutation	Sponge Wrap Ketje&Keyak, NORX	APE

Green ISO/IEC 19772:2009 (NIST recommended: CCM, GCM)
Blue part of the CAESAR competition (+OCB)
* hold a patent

AE Characteristics

Security	Efficiency
 + Nonce misuse resistant NMR + Secure against release of unverified plaintext RUP + Side-channel resistant 	 + Online + Parallelizable + Inverse free + Low # data passes + Incrementality + Static AD
Underlying primitive?	

Target security levels?

Target platform?

Nonce Misuse

- Flawed implementations
- Bad user management
- Backup reset of virtual machine clones

Not all security should be lost if N is misused!

Nonce Misuse

- 1. MAX security up to M repetitions SIV, BTM, HBS but two passes over the data
- 2. LCP security up to longest common prefix McOE-G, COPA, APE, POET

Release of Unverified Plaintext RUP Andreeva et al. (2014)

- Insecure memory
- Small buffer
- Real-time requirements

Attacker gets ciphertext decryptions before verification completed!

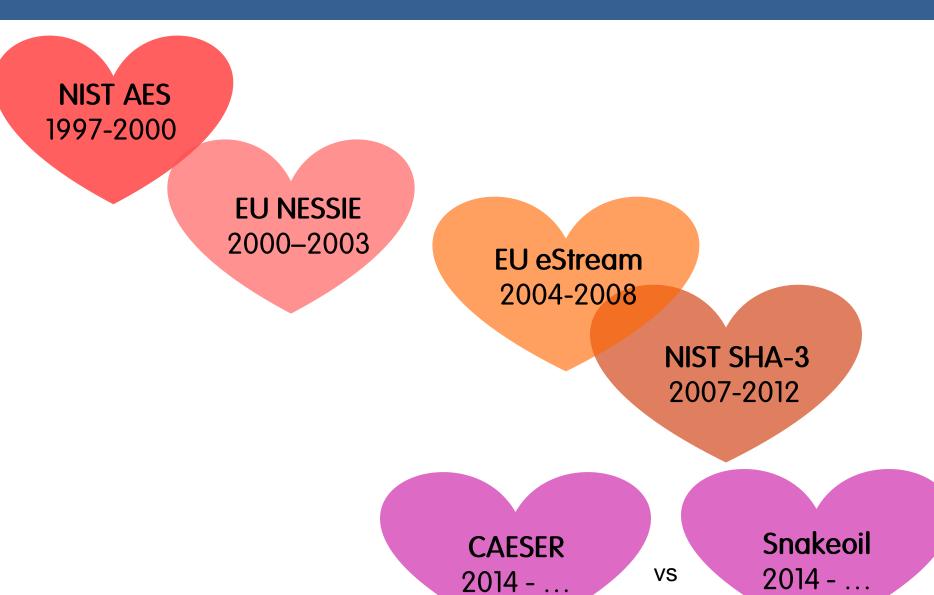
(not in current AE security models)

Release of Unverified Plaintext

Andreeva et al. (2014)

Nonce	AE scheme	RUP confidentiality
Nonce dependent	OCB, CCM, GCM SpongeWrap	No No
Nonce MR	COPA, McOE-G APE SIV, BTM, HBS	No Yes Yes

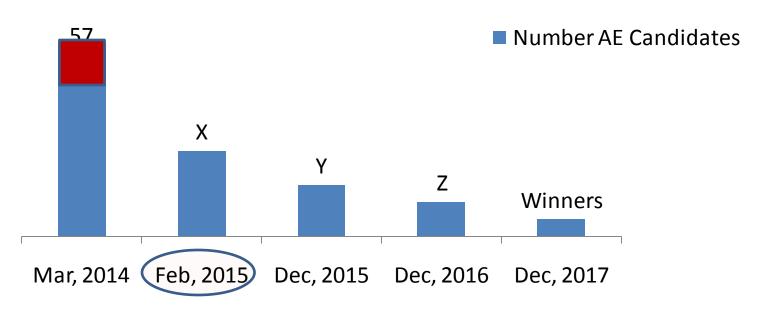
In Summary ...


Multiple AE security and efficiency objectives

More analysis and trust in AE

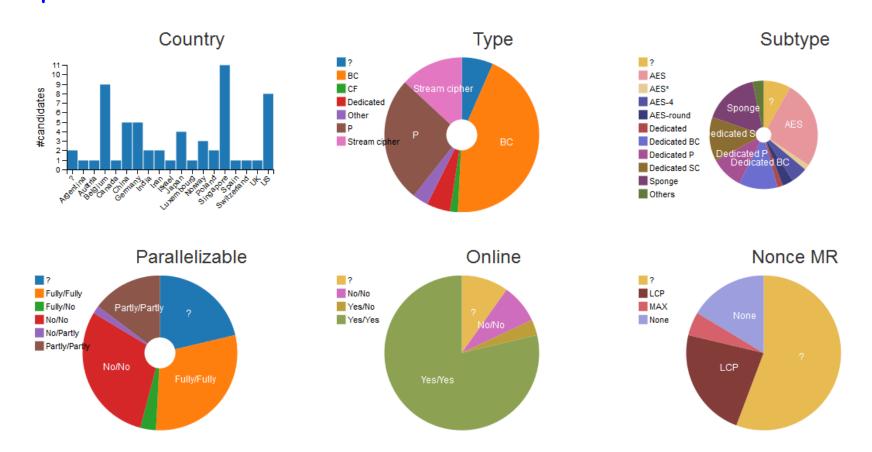
before deployment

Cryptographic competition


Cryptographers Affairs

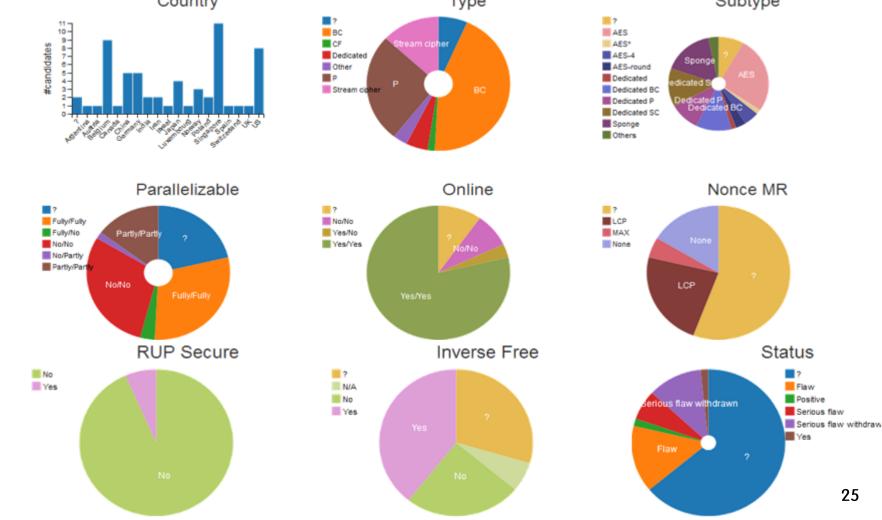
CAESAR

Competition for Authenticated Encryption: Security, Applicability, and Robustness


- Easy to use, secure and efficient AE
- Advantageous over AES-GCM and suitable for widespread adoption

CAESAR Comparison

Properties dataviz by Xavier Dutoit >


http://homes.esat.kuleuven.be/~eandreev/caesarviz/index.html

CAESAR Comparison

Properties dataviz by Xavier Dutoit >>

http://homes.esat.kuleuven.be/~eandreev/caesarviz/index.html

CAESAR Comparison and Categories

- Properties dataviz by Xavier Dutoit >>
- http://homes.esat.kuleuven.be/~eandreev/caesarviz/index.html
- https://mjos.fi/aead_feedback/
- http://www1.spms.ntu.edu.sg/~syllab/speed/
- Categories (speculate © ...)
 - Target platforms and applications

hardware/software/low latency/lightweight/...

Security

high margin/NMR/RUP/side-channel/...

CAESAR

http://competitions.cr.yp.to/caesar.html

Thank you!