Post-Snowden Elliptic Curve Cryptography

Patrick Longa Microsoft Research

Joppe Bos Craig Costello Michael Naehrig NXP Semiconductors Microsoft Research Microsoft Research

June 2013 — the Snowden leaks

The New York Times

"... the NSA had written the [crypto] standard and could break it."

Post-Snowden responses

- Bruce Schneier: "I no longer trust the constants. I believe the NSA has manipulated them..."
- TLS WG makes formal request to CFRG for new elliptic curves for usage in TLS
- NIST announces plans to host workshop to discuss new elliptic curves

Our motivations

1. Curves that regain confidence and acceptance from public

- simple and rigid generation / "nothing up my sleeves"

Improved performance and security for standard ECC algorithms and protocols

- new curve models
- faster finite fields
- side-channel resistance

Industry moving to Perfect Forward Secrecy (PFS) modes (e.g., ECDHE)

(e.g., see "Protecting Customer Data from Government Snooping" by Brad Smith, Microsoft General Counsel http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/)

"Nothing-Up-My-Sleeve" (NUMS) curve generation

Case with Edwards form, $p = 3 \pmod{4}$

Define the Edwards curve E_d/\mathbb{F}_p : $x^2+y^2=1+dx^2y^2$ with quadratic twist E'_d/\mathbb{F}_p : $x^2+y^2=1+(1/d)x^2y^2$.

- 1. Pick a prime p according to well-defined efficiency/security criteria
- 2. Find smallest |d| > 0, with d non-square in \mathbb{F}_p , such that $\#E_d = h \times r$ and $\#E'_d = h' \times r'$, where r, r' are primes and h = h' = 4

Note: for both Edwards and twisted Edwards, minimal d corresponds to minimal Montgomery constant (A+2)/4 up to isogeny

Case with twisted Edwards form, $p = 1 \pmod{4}$

Define the twisted Edwards curve E_d/\mathbb{F}_p : $-x^2+y^2=1+dx^2y^2$ with quadratic twist E'_d/\mathbb{F}_p : $-x^2+y^2=1+(1/d)x^2y^2$.

- 1. Pick a prime p according to well-defined efficiency/security criteria
- 2. Find smallest |d| > 0, with d non-square in \mathbb{F}_p , such that $\#E_d = h \times r$ and $\#E'_d = h' \times r'$, where r, r' are primes and $\{h, h'\} = \{4,8\}^2$

¹ The NUMS generation algorithm was presented in Bos et al. "Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis", http://eprint.iacr.org/2014/130, and extended to $p = 1 \pmod{4}$ in Black et al., http://tools.ietf.org/html/draft-black-rpgecc-00.

² In addition, care must be taken to ensure MOV degree and CM discriminant requirements.

"Nothing-Up-My-Sleeve" (NUMS) curve generation

- > It can be easily adapted to other curve forms.
- There are several alternatives for primes: pseudo-random, pseudo-Mersenne, "Solinas" primes, etc.
 - \triangleright Our original preference to balance rigidity, consistency and efficiency was to fix $p=2^{2s}-c$, where c is the smallest integer s.t. $p\equiv 3 \mod 4$ for $s\in \{256,384,512\}$.
 - ightharpoonup Later extended to $p\equiv 1\ \mathrm{mod}\ 4$ to enable the use of complete twisted Edwards additions

But if efficiency is the main criteria:

How do we select primes?

Selecting primes: saturated vs. unsaturated arithmetic

Saturated:

limbs = field bitlength/computer word bitlength

No room for accumulating intermediate values without word spilling

Unsaturated:

limbs \geq [(field bitlength + δ)/computer word bitlength], for some $\delta > 0$ Extra room for accumulating intermediate values without word spilling

Selecting primes: saturated vs. unsaturated arithmetic

Saturated:

- More efficient when operations with carries are efficient, multiplication is relatively expensive (e.g., AMD, Intel Atom, Intel Quark, ARM w/o NEON, microcontrollers)
- More amenable for "generic" libraries, support for multiple curves
- Cleaner/easier-to-maintain curve arithmetic

Unsaturated:

- More efficient when instructions with carries are relatively expensive (e.g., Intel desktop/server)
- More efficient when using vector instructions (e.g., ARM with NEON)
- (When using incomplete reduction) requires specialized curve arithmetic. Bound analysis is required: error prone, errors are more difficult to catch

Comparison of x64 implementations Unsaturated versus Saturated

Relative cost between Curve25519 amd64-51 (unsaturated) and amd64-64 (saturated). RED indicates amd64-64 is better

Intel Haswell (wintermute): 10%

Intel Ivy Bridge (hydra8): 6%

Intel Sandy Bridge (hydra7): 5%

Intel Atom (h8atom): -36%

AMD Piledriver (hydra9): -39%

AMD Bulldozer (hydra6): -38%

AMD Bobcat (h4e450): -47%

^{*} Source: SUPERCOP, accessed 01/05/2015

A new high-security curve: Ted37919

Ted37919 is defined by the twisted Edwards curve

$$E: -x^2 + y^2 = 1 + 143305x^2y^2$$

defined over \mathbb{F}_p with $p=2^{379}-19$. #E=8r, where $r=2^{376}-212648873052802741983876663836064015775919150954032106379.$

- Provides \sim 188 bits of security
- Minimal d in twisted Edwards form
- Minimal constant (A + 2)/4 in its isogenous Montgomery form
- Generated with the NUMS curve generation algorithm
- > Implementation-friendly to both saturated and unsaturated arithmetic: truly high efficiency independent of the platform for the 192-bit level

Comparison with other high-security curves

Number of limbs for the implementation of different fields (64 and 32-bit CPU)

Saturated arithmetic

```
2^{379} - 19 (Ted37919): 6 64-bit limbs or 12 32-bit limbs 2^{389} - 21 (*): 7 64-bit limbs or 13 32-bit limbs 2^{414} - 17 (Curve41417): 7 64-bit limbs or 13 32-bit limbs 2^{448} - 2^{224} - 1 (Goldilocks): 7 64-bit limbs or 14 32-bit limbs
```

Unsaturated arithmetic

```
2^{379} - 19 (Ted37919): 7 54/55-bit limbs or 15 25/26-bit limbs 2^{389} - 21 (*): 7 55/56-bit limbs or 15 25/26-bit limbs 2^{414} - 17 (Curve41417): 8 51/52-bit limbs or 16 25/26-bit limbs 2^{448} - 2^{224} - 1 (Goldilocks): 8 56-bit limbs or 16 28-bit limbs
```

(*) The use of this prime has been discussed on the CFRG mailing list (e.g., see http://www.ietf.org/mail-archive/web/cfrg/current/msg05733.html)

Comparison with other high-security curves

Cycles to compute scalar multiplication (on "unsaturated-friendly" platforms)

Curve	bit security	Intel Sandy Bridge	Intel Haswell
Ted37919, $p = 2^{379} - 19$	187.8	494,000	410,000
Ed448-Goldilocks, $p = 2^{448} - 2^{224} - 1$ (*)	222.8	658,000	532,000
E-521, $p = 2^{521} - 1$	259.3	1,030,000	803,000

- Ted37919 implementation is very simple, no use of more complex algorithms such as Karatsuba.
- Pure C versions cost 558,000 and 467,000 cycles on Intel SB and Haswell, respectively.

(*) Source: SUPERCOP, accessed on 01/05/2015

Post-Snowden Elliptic Curve Cryptography

Q&A

Patrick Longa Microsoft Research

http://research.microsoft.com/en-us/people/plonga/

Joppe Bos Craig Costello Michael Naehrig NXP Semiconductors Microsoft Research Microsoft Research