
Post-Snowden Elliptic Curve
Cryptography

Joppe Bos NXP Semiconductors
Craig Costello Microsoft Research
Michael Naehrig Microsoft Research

Patrick Longa
Microsoft Research

June 2013 – the Snowden leaks

“… the NSA had written
the [crypto] standard
and could break it.”

Post-Snowden responses

• Bruce Schneier: “I no longer trust the constants. I believe the NSA has manipulated
them…”

• TLS WG makes formal request to CFRG for new elliptic curves for usage in TLS

• NIST announces plans to host workshop to discuss new elliptic curves

Our motivations

1. Curves that regain confidence and acceptance from public

- simple and rigid generation / “nothing up my sleeves”

2. Improved performance and security for standard ECC algorithms and
protocols

- new curve models

- faster finite fields

- side-channel resistance

Industry moving to Perfect Forward Secrecy (PFS) modes (e.g., ECDHE)

(e.g., see “Protecting Customer Data from Government Snooping” by Brad Smith, Microsoft General Counsel
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/)

http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/

Case with Edwards form, 𝒑 = 𝟑(𝐦𝐨𝐝 𝟒)

Define the Edwards curve 𝐸𝑑/𝔽𝑝: 𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 with quadratic twist

𝐸′𝑑/𝔽𝑝: 𝑥
2 + 𝑦2 = 1 + (1/𝑑)𝑥2𝑦2.

1. Pick a prime 𝑝 according to well-defined efficiency/security criteria

2. Find smallest 𝑑 > 0, with 𝑑 non-square in 𝔽𝑝, such that #𝐸𝑑 = ℎ × 𝑟 and
#𝐸′𝑑 = ℎ′ × 𝑟′, where 𝑟, 𝑟′ are primes and ℎ = ℎ′ = 4

Note: for both Edwards and twisted Edwards, minimal 𝑑 corresponds to minimal Montgomery
constant (𝐴 + 2)/4 up to isogeny

“Nothing-Up-My-Sleeve” (NUMS) curve generation

Case with twisted Edwards form, 𝒑 = 𝟏(𝐦𝐨𝐝 𝟒)

Define the twisted Edwards curve 𝐸𝑑/𝔽𝑝: −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 with

quadratic twist 𝐸′𝑑/𝔽𝑝: −𝑥
2 + 𝑦2 = 1 + (1/𝑑)𝑥2𝑦2.

1. Pick a prime 𝑝 according to well-defined efficiency/security criteria

2. Find smallest 𝑑 > 0, with 𝑑 non-square in 𝔽𝑝, such that #𝐸𝑑 = ℎ × 𝑟 and
#𝐸′𝑑 = ℎ′ × 𝑟′, where 𝑟, 𝑟′ are primes and ℎ, ℎ′ = 4,8 2

1 The NUMS generation algorithm was presented in Bos et al. “Selecting Elliptic Curves for Cryptography:
An Efficiency and Security Analysis”, http://eprint.iacr.org/2014/130, and extended to 𝑝 = 1(mod 4) in
Black et al., http://tools.ietf.org/html/draft-black-rpgecc-00.

2 In addition, care must be taken to ensure MOV degree and CM discriminant requirements.

“Nothing-Up-My-Sleeve” (NUMS) curve generation 1

http://eprint.iacr.org/2014/130
http://tools.ietf.org/html/draft-black-rpgecc-00

 It can be easily adapted to other curve forms.

 There are several alternatives for primes: pseudo-random, pseudo-
Mersenne, “Solinas” primes, etc.
Our original preference to balance rigidity, consistency and efficiency was to fix 𝑝 =
22𝑠 − 𝑐, where 𝑐 is the smallest integer s.t. 𝑝 ≡ 3 mod 4 for 𝑠 ∈ 256, 384, 512 .

Later extended to 𝑝 ≡ 1 mod 4 to enable the use of complete twisted Edwards
additions

But if efficiency is the main criteria:

How do we select primes?

“Nothing-Up-My-Sleeve” (NUMS) curve generation

Selecting primes:
saturated vs. unsaturated arithmetic

Saturated:

limbs = field bitlength/computer word bitlength

No room for accumulating intermediate values without word spilling

Unsaturated:

limbs ≥ field bitlength + 𝛿 /computer word bitlength , for some 𝛿 > 0

Extra room for accumulating intermediate values without word spilling

Selecting primes:
saturated vs. unsaturated arithmetic

Saturated:

limbs = field bitlength/computer word bitlength

No room for accumulating intermediate values without word spilling

Unsaturated:

‐ More efficient when operations with carries are efficient, multiplication is relatively
expensive (e.g., AMD, Intel Atom, Intel Quark, ARM w/o NEON, microcontrollers)

‐ More amenable for “generic” libraries, support for multiple curves
‐ Cleaner/easier-to-maintain curve arithmetic

‐ More efficient when instructions with carries are relatively expensive (e.g., Intel
desktop/server)

‐ More efficient when using vector instructions (e.g., ARM with NEON)
‐ (When using incomplete reduction) requires specialized curve arithmetic.

Bound analysis is required: error prone, errors are more difficult to catch

Relative cost between Curve25519 amd64-51 (unsaturated) and amd64-64
(saturated). RED indicates amd64-64 is better

Intel Haswell (wintermute): 10%

Intel Ivy Bridge (hydra8): 6%

Intel Sandy Bridge (hydra7): 5%

Intel Atom (h8atom): -36%

AMD Piledriver (hydra9): -39%

AMD Bulldozer (hydra6): -38%

AMD Bobcat (h4e450): -47%

* Source: SUPERCOP, accessed 01/05/2015

Comparison of x64 implementations
Unsaturated versus Saturated

Ted37919 is defined by the twisted Edwards curve

𝐸: −𝑥2 + 𝑦2 = 1 + 143305𝑥2𝑦2

defined over 𝔽𝑝 with 𝑝 = 2379 − 19. #𝐸 = 8𝑟, where 𝑟 = 2376 −
212648873052802741983876663836064015775919150954032106379.

• Provides ~188 bits of security

• Minimal 𝑑 in twisted Edwards form

• Minimal constant (𝐴 + 2)/4 in its isogenous Montgomery form

• Generated with the NUMS curve generation algorithm

 Implementation-friendly to both saturated and unsaturated arithmetic:

truly high efficiency independent of the platform for the 192-bit level

A new high-security curve: Ted37919

Saturated arithmetic

2379 − 19 (Ted37919): 6 64-bit limbs or 12 32-bit limbs

2389 − 21 (*): 7 64-bit limbs or 13 32-bit limbs

2414 − 17 (Curve41417): 7 64-bit limbs or 13 32-bit limbs

2448 − 2224 − 1 (Goldilocks): 7 64-bit limbs or 14 32-bit limbs

Unsaturated arithmetic

2379 − 19 (Ted37919): 7 54/55-bit limbs or 15 25/26-bit limbs

2389 − 21 (*): 7 55/56-bit limbs or 15 25/26-bit limbs

2414 − 17 (Curve41417): 8 51/52-bit limbs or 16 25/26-bit limbs

2448 − 2224 − 1 (Goldilocks): 8 56-bit limbs or 16 28-bit limbs

Comparison with other high-security curves
Number of limbs for the implementation of different fields (64 and 32-bit CPU)

(*) The use of this prime has been discussed on the CFRG mailing list
(e.g., see http://www.ietf.org/mail-archive/web/cfrg/current/msg05733.html)

http://www.ietf.org/mail-archive/web/cfrg/current/msg05733.html

• Ted37919 implementation is very simple, no use of more complex algorithms such as Karatsuba.

• Pure C versions cost 558,000 and 467,000 cycles on Intel SB and Haswell, respectively.

Comparison with other high-security curves

Curve
bit

security
Intel Sandy

Bridge
Intel Haswell

Ted37919, 𝑝 = 2379 − 19 187.8 494,000 410,000

Ed448-Goldilocks, 𝑝 = 2448 − 2224 − 1 (*) 222.8 658,000 532,000

E-521, 𝑝 = 2521 − 1 259.3 1,030,000 803,000

(*) Source: SUPERCOP, accessed on 01/05/2015

Cycles to compute scalar multiplication (on “unsaturated-friendly” platforms)

Post-Snowden Elliptic Curve
Cryptography

Joppe Bos NXP Semiconductors
Craig Costello Microsoft Research
Michael Naehrig Microsoft Research

Patrick Longa
Microsoft Research

http://research.microsoft.com/en-us/people/plonga/

Q&A

