

Real World Cryptography Conference 2016
6-8 January 2016, Stanford, CA, USA

Intel® Software Guard Extensions (Intel® SGX)
Memory Encryption Engine (MEE)

Shay Gueron

Intel Corp., Intel Development Center, Haifa, Israel

University of Haifa, Israel

2016 Intel Corporation. All rights reserved.

(real world) agenda

• Describe in a nutshell

– Why Memory Encryption

• Some real world challenges

– How it was done

• Real world considerations

– Security bounds

• Real world security bounds

– Performance

• Real world performance experiment

RCW 2016, Memory Encryption Engine 2

Cryptographic protection of memory

• An essential ingredient for any technology that allows a closed
computing system to

• Run software in a trustworthy manner and to handle secrets

• While external memory susceptible to snooping & tampering

• Example: Intel® Software Guard Extensions (Intel® SGX)
– 6th Generation Intel® CoreTM (Architecture codename Skylake)

– The assumed security perimeter includes only the CPU package internals
DRAM is untrusted.

RCW 2016, Memory Encryption Engine 3

SGX cryptographic protection of memory
is supported by the Memory Encryption Engine

Memory Encryption Engine

• Hardware unit - extension of the Memory Controller

• Objectives:

– Data Confidentiality: Collections of memory images of DATA
written to the DRAM (into different addresses and points in
time) cannot be distinguished from random data.

– Integrity: DATA read back from DRAM to LLC is the same DATA
that was most recently written from LLC to DRAM.

• MEE is not an Oblivious RAM
– Does not hide the fact that data is written to the DRAM, when it is

written, and to which physical address

RCW 2016, Memory Encryption Engine 4

• The challenge: adding a hardware unit to the micro architecture
of a general purpose processor (real product)

• Requires design under very strict engineering constraints

– Minimal hardware area but tolerable performance

– A small budget for internal storage

– Standard crypto primitives are not optimal for this problem

– Since transparent encryption is not enough

• MEE needs to initiate additional memory transactions

Memory Encryption Engine
Real World Challenge

RCW 2016, Memory Encryption Engine 5

How the MEE works – in a nutshell

• Core issues a transaction

– (to MEE region); e.g., WRITE

• Transaction misses caches and

forwarded to Memory Controller

• MC detects address belongs to

MEE region & routes transaction

to MEE

• Crypto processing and… …

• MEE initiates additional memory

accesses to obtain (or write to)

necessary data from DRAM

– Produces plaintext (ciphertext)

– Computes authentication tags

– (uses/updates internal data)

– writes ciphertext + added data

Core

C
a

c
h

e

 Uncore

(MC)

MEEP
R

M
R

R

DRAM

Build

6 RCW 2016, Memory Encryption Engine

Ciphertext

Other data:

Counters &

tags

Internal SRAM

MEE Operates as an

extension of the Memory

Controller (MC)

CPU package

MEE basic setup and policy

• Memory access always at 512 bits Cache Line (CL) granularity

• Keys: randomly generated at reset by a HW DRNG module

– Accessible only to MEE hardware

• Drop-and-lock policy: upon MAC tag mismatch, MEE
• Drops the transaction (i.e., no data is sent to the LLC)

• Locks the MC (i.e., no further transactions are serviced).

• Eventually system halts & reset is required (with new keys)

– No unauthenticated data ever infiltrate the CPU boundary

• While internal calculations can be parallelized at any order

– Adversary has only one failed forgery attempt per key

 RCW 2016, Memory Encryption Engine 7

CL1

CL2

CL3

CL0

 On-die storage

CTR3

CTR2

CTR1

CTR0

Tag1

Tag2

Tag3

Tag0

An abstract 1-level data structure

8 RCW 2016, Memory Encryption Engine

• A “Stateful” MAC algorithm over

Data + CTR

• (internal) CTR’s are trusted

√ Integrity + replay protection

• Constraint:

• Internal storage (SRAM) is

very expensive

Compressing it: a 2-level data structure

RCW 2016, Memory Encryption Engine 9

CL1

CL2

CL3

CL0

On-die storage

CTR3 CTR2 CTR1 CTR0

Tag1

Tag2

Tag3

Tag0

Tag10

CTR10

CL10

• “Stateful” MAC over Data and CTR

• 1st level tags protect Data

• 2nd level tag protects the counters

• Top level tag is internal  trusted

• Counters protect “freshness”

• Trading internal storage with a

walk over the data structure

• (complexity & performance)

Embedded MAC tags

RCW 2016, Memory Encryption Engine 10

(D0) U0

(D1) U1

(D2) U2

(D3) U3

n03n02n01n00

Tag1

Tag2

Tag3

Tag0

Tag00

n10

L00

L10

Data

Level 1

Level 0

Root

(internal storage)
Memory accesses can

be saved if tags are

embedded in the CL’s

Possible in case some

bits in the CL can be

reserved for the tags

Idea:

56 × 8 + 64 = 512

Embedded MAC tags

The MEE inequality 56 × 8 + 56 < 512

RCW 2016, Memory Encryption Engine 11

cntr0cntr1cntr2cntr4cntr5cntr6cntr7

 8 x 56-bit counters

cntr3

7 bits 1 bit (unused) 56 bits

Internal field layout

56-bit
Tag

One CL accommodates 8 counters and embedded tag

RCW 2016, Memory Encryption Engine 12

The MEE actual integrity tree
is a multi-level construction

with 8x compression ratio per level

RCW 2016, Memory Encryption Engine 13

ver6 ver7ver5ver4ver2 ver3ver1ver0

Protected Data CL (ciphertext)

Tag1

PD_Tag7

n06 n07n05n04n02 n03n01n00Tag 00

n16 n17n15n14n12 n13n11n10Tag 10

n26 n27n25n24n22 n23n21n20Tag 20

n36n37 n35 n34 n32n33 n31 n30

Tree-covered region

PD_Tag6PD_Tag5PD_Tag4PD_Tag3PD_Tag2PD_Tag1PD_Tag0
L

Level 0

Level 1

Level 2

Level 3
(root)

Protected
data

Integrity
Tree

Metadata

The overall compression rate

DATA: 96MB

MAC tags & Counters:
12+12 = 24MB

Counters Level 0:
1.5MB

Counters Level 1:192KB

Counters Level 2:24KB

SRAM
Counters Level 3: 3KB

Embedded MEE-MAC

Embedded

tags
Embedded tags

Embedded

tags

Versions & tags

14 RCW 2016, Memory Encryption Engine

The MEE cryptographic primitives

• A tailored AES CTR encryption

– Spatial and temporal “coordinates”

• A tailored MAC algorithm

– Carter-Wegman MAC

• over a multilinear universal hash function

– Plus truncation (to 56 bits)

– Spatial and temporal “coordinates”

• MEE keys (768 bits)

– Confidentiality key: 128 bits

– Integrity keys: Masking key: 128 bits + hash key: 512 bits

RCW 2016, Memory Encryption Engine 15

MEE Counter Mode
Spatial and temporal coordinates

identify every 16B block in the address space, at any time

16

Address has 39 bits; idx: 2 bits representing location in the CL; Version: 56 bits

AES128

Encrypted Counter Block

XOR

Ciphertext (or plaintext), 128b

COUNTER_BLOCK

Plaintext (or ciphertext),
128b

CONFIDENTIALITY_KEY

Version Ctr
(56b)

PhysAdr[38:6]
(33b)

idx
(2b)

‘0
(37b)

RCW 2016, Memory Encryption Engine

Encryption of 1 CL

involves 4 AES

operations

The MAC algorithm

• Multilinear universal hash

– (“Inner Product hash”)

– Operations in GF (264)

• Masked by (truncated) AES

• Truncated to 56 bits

– Why? Real world…

– If tags and counters have
same length they can
share same internal bus

17 RCW 2016, Memory Encryption Engine

Tag = L + Q0  K0 + Q1  K1 + Q2  K2 + … + Q7  K7 in GF(264) Truncated to 56 bits

AES128

K1

K2

K3

K4

K5

K6

K7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

IP0

IP1

IP2

IP3

IP4

IP5

IP6

IP7

Mod x64 + x4 + x3 + x +1

Trunc56 L

L [63:0]

K0

H [127:64]

CTR
(56b)

Address>>6
(33b)

‘0
(39b)

Compound nonce

Tag, 56b

Spatial &

temporal

coordinates

The MEE cache
Sweetening the performance degradation impact

• Walking and processing the full read (write) flow for every
cache miss can be very time-wise painful

– E.g., 5 CL for “write”:  [DATA, MAC, Version, L0, L2, L2 (L3)]

• Caching frequently used portions can significantly improve the
performance
– MEE internal cache holds counters and versions (not data nor data tags)

– Counters that are retrieved from cache are trusted

• Read/write flow stops at the cached node

– With a lucky MEE-cache hit at the lowest level: Read operation required
only one decryption and one MAC operation

18
RCW 2016, Memory Encryption Engine

What about security margins?

Aren’t 56-bit MAC tags

against the instinct of any cryptgrapher?

Maybe the 56-bit counters can be rolled over by
dedicated attack code?

Worried?

Let’s define the super adversary model
RCW 2016, Memory Encryption Engine 19

The super adversary model

idealized eavesdropper and forger

 • Observes ciphertext / MAC tags samples (up to 256)

– Every observed ciphertext comes from a chosen plaintext

– Every observed MAC tag comes from a chosen message

– Spends 0 time (& cost) for storing all the data off platform

– Collection all at 100% accuracy at highest (CL) granularity

– Collection time bounded only by platform’s physical throughput

• Then

– Tries to gain information on plaintext (of victim applications)

– Attempts a forgery (1 failure per key set)  reset and repeat

RCW 2016, Memory Encryption Engine 20

Beyond real world capabilities
but translates the discussion to a cryptographic problem

Some theorems
on information theoretic bounds

RCW 2016, Memory Encryption Engine 21

Translated to a “real world crypto” statement

- Collecting many samples (even 256) does not give a significant advantage in

distinguishing MEE ciphertexts from random

- Collecting many MAC tags samples (even 256) does not improve the forgery

success probability beyond 1/256 by any meaningful amount

- At 256 samples the game is over (drop-and-lock enforced)

Putting the crypto bounds to the test
How many samples can the adversary see?

• Idealized: collection rate = platform’s physical throughput

– Can he see 256 ciphertexts?

– Can he rollover 256 counter?

– Can he make ~256 MAC tag guesses (try-fail-reboot-try…)

• Real system’s limitation

– AES engine throughput: 16B per cycle

– Field multiplier throughput: 1 GF (264) multiply per cycle

– 1 Write (CL + Tag) involves at least (with MEE internal cache hit)

• (4 + 1) AES operations + (8+2) field multiplications

– @ 2GHz (if overclocked)

• Idealized sampling rate ≤ 1/10 freq. = 0.2G samples / sec

RCW 2016, Memory Encryption Engine 22

Does an MEE with 56-bit tags and 56-bit
counters give a sufficient security promise?

• Let’s also assume 1000 “forge-boot” attempts per sec.

– Above the CPU reset flow latency, but a nice number…

RCW 2016, Memory Encryption Engine 23

• Rollover (serial) would take at best 10.5 years
• Forgery (parallelizable) would take at best ~2M years

(or, 2 years over 1M machines doing forge-boot constantly)

Performance impact experiment

• Security costs 

• MEE overheads: encryption, authentication, tree walk…

• What is the observed performance impact on applications?

– The answer depends on multiple factors

• Experiment:
– 445.gobmk component of SPECINT2006 v01

– Selecting 10 input files

– Compiled the 445.gobmk test with Graphene (library OS), after adapting it to
run inside an Intel SGX enclave.

– This test measured (with the 10 input files) under two conditions:

A. without SGX (hence no MEE involved) B. inside an enclave (i.e., while MEE is active)

– Comparison gives an estimation for the MEE performance impact

RCW 2016, Memory Encryption Engine 24

Performance estimation experimental results

RCW 2016, Memory Encryption Engine 25

5.22

2.57

9.53

4.9
3.25

8.04

3.29 3.06 3.05

12.18

0

2

4

6

8

10

12

14

M
EE

 p
e

rf
o

rm
an

ce
 d

e
gr

ad
at

io
n

 im
p

ac
t

(i
n

 %
)

MEE performance impact

between ~2.2% to ~12%, with average of ~5.5%

445.gobmk component of SPECINT 2006 (with 10 input files)

Bars show the performance degradation (in %) incurred by enabling the MEE

Conclusion
• MEE is essential to Intel® SGX technology

– Provides data confidentiality, integrity, replay protection

• Building a real-word MEE in a real CPU is a formidable
engineering challenge
– MEE is based on a careful combination of tailored cryptographic

primitives operating on a tailored integrity tree data structure

• Proven security margins even against an idealized adversary

• Reasonable (tolerable?) performance impact

• More information?

– A detailed paper will be published

– I am available for questions, comments and discussions

26 RCW 2016, Memory Encryption Engine

Thank you

Legal Disclaimer

• The comments and statements are mine and not necessarily Intel’s

• Intel technologies may require enabled hardware, specific software, or
services activation. Check with your system manufacturer or retailer.

• No computer system can be absolutely secure. Intel does not assume any
liability for lost or stolen data or systems or any damages resulting from
such losses.

• © 2016 Intel Corporation

27

