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(real world) agenda 

• Describe in a nutshell 

– Why Memory Encryption 

• Some real world challenges 

– How it was done 

• Real world considerations 

– Security bounds 

• Real world security bounds 

– Performance 

• Real world performance experiment 
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Cryptographic protection of memory 

• An essential ingredient for any technology that allows a closed 
computing system to  

• Run software in a trustworthy manner and to handle secrets 

• While external memory susceptible to snooping & tampering  

 

• Example: Intel® Software Guard Extensions (Intel® SGX)  
– 6th Generation Intel® CoreTM (Architecture codename Skylake) 

– The assumed security perimeter includes only the CPU package internals  
DRAM is untrusted.   
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SGX cryptographic protection of memory  
is supported by the Memory Encryption Engine 



Memory Encryption Engine 

• Hardware unit - extension of the Memory Controller 

• Objectives:  

– Data Confidentiality: Collections of memory images of DATA 
written to the DRAM (into different addresses and points in 
time) cannot be distinguished from random data. 

– Integrity: DATA read back from DRAM to LLC is the same DATA 
that was most recently written from LLC to DRAM. 

 

• MEE is not an Oblivious RAM 
– Does not hide the fact that data is written to the DRAM, when it is 

written, and to which physical address 
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• The challenge: adding a hardware unit to the micro architecture 
of a general purpose processor (real product) 

• Requires design under very strict engineering constraints 

– Minimal hardware area but tolerable performance  

– A small budget for internal storage 

– Standard crypto primitives are not optimal for this problem 

– Since transparent encryption is not enough 

• MEE needs to initiate additional memory transactions 

 

Memory Encryption Engine 
Real World Challenge 
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How the MEE works – in a nutshell 

• Core issues a transaction  

– (to MEE region); e.g., WRITE 

• Transaction misses caches and 

forwarded to Memory Controller 

• MC detects address belongs to  

MEE region & routes transaction  

to MEE 

• Crypto processing and… …  

• MEE initiates additional memory 

accesses to obtain (or write to) 

necessary data from DRAM 

– Produces plaintext (ciphertext) 

– Computes authentication tags 

– (uses/updates internal data) 

– writes ciphertext + added data 
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Ciphertext 

Other data: 

Counters & 

tags 

Internal SRAM 

MEE Operates as an 

extension of the Memory 

Controller (MC) 

CPU package 



MEE basic setup and policy 

• Memory access always at 512 bits Cache Line (CL) granularity 

• Keys: randomly generated at reset by a HW DRNG module 

– Accessible only to MEE hardware 

 

• Drop-and-lock policy: upon MAC tag mismatch, MEE  
• Drops the transaction (i.e., no data is sent to the LLC)  

• Locks the MC (i.e., no further transactions are serviced).  

• Eventually system halts & reset is required (with new keys) 

 

– No unauthenticated data ever infiltrate the CPU boundary 

• While internal calculations can be parallelized at any order 

– Adversary has only one failed forgery attempt per key 

 RCW 2016, Memory Encryption Engine 7 



CL1 

CL2 

CL3 

CL0 

                         On-die storage 

CTR3 

CTR2 

CTR1 

CTR0 

Tag1 

Tag2 

Tag3 

Tag0 

An abstract 1-level data structure 
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• A “Stateful” MAC algorithm over 

Data + CTR 

 

• (internal) CTR’s are trusted 

 

√ Integrity + replay protection 

 

• Constraint:  

• Internal storage (SRAM) is 

very expensive 



Compressing it: a 2-level data structure 
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• “Stateful” MAC over Data and CTR 

 

• 1st level tags protect Data 

 

• 2nd level tag protects the counters 

 

• Top level tag is internal  trusted 

 

• Counters protect “freshness” 

 

 

• Trading internal storage with a 

walk over the data structure  

 

• (complexity & performance) 

 

 



Embedded MAC tags 

RCW 2016, Memory Encryption Engine 10 

(D0)    U0

(D1)     U1

(D2)     U2

(D3)     U3

n03n02n01n00

Tag1

Tag2

Tag3

Tag0

Tag00

n10

L00

L10

Data

Level 1

Level 0

Root

(internal storage)
Memory accesses can 

be saved if tags are 

embedded in the CL’s  

 

Possible in case some 

bits in the CL can be 

reserved for the tags 

 

 

Idea:  

56 × 8 + 64 = 512 



Embedded MAC tags 
 

The MEE inequality 56 × 8 + 56 < 512 
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cntr0cntr1cntr2cntr4cntr5cntr6cntr7

  8 x 56-bit counters   

cntr3

7 bits 1 bit (unused) 56 bits 

Internal field layout

56-bit 
Tag

One CL accommodates 8 counters and embedded tag 
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The MEE actual integrity tree 
is a multi-level construction  

with 8x compression ratio per level 
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The overall compression rate 

DATA: 96MB 

MAC tags & Counters: 
12+12 = 24MB 

Counters Level 0: 
1.5MB 

Counters Level 1:192KB 

Counters Level 2:24KB 

SRAM  
Counters Level 3: 3KB 

Embedded MEE-MAC 

Embedded 

tags 
Embedded tags 

Embedded 

tags 

Versions & tags 
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The MEE cryptographic primitives 

• A tailored AES CTR encryption 

– Spatial and temporal “coordinates”  

• A tailored MAC algorithm 

– Carter-Wegman MAC  

• over a multilinear universal hash function  

– Plus truncation (to 56 bits) 

– Spatial and temporal “coordinates” 

• MEE keys (768 bits) 

– Confidentiality key: 128 bits 

– Integrity keys:  Masking key: 128 bits +  hash key: 512 bits 
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MEE Counter Mode  
Spatial and temporal coordinates  

identify every 16B block in the address space, at any time 

16 

Address has 39 bits; idx: 2 bits representing location in the CL; Version: 56 bits 

AES128

Encrypted Counter Block

XOR

Ciphertext (or plaintext), 128b

COUNTER_BLOCK

Plaintext (or ciphertext), 
128b

CONFIDENTIALITY_KEY

Version Ctr
(56b)

PhysAdr[38:6]
(33b)

idx
(2b)

‘0
(37b)
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Encryption of 1 CL  

involves 4 AES 

operations 



The MAC algorithm 

• Multilinear universal hash 

– (“Inner Product hash”) 

– Operations in GF (264) 

 

• Masked by (truncated) AES  

 

• Truncated to 56 bits 

– Why? Real world…  

– If tags and counters have 
same length they can  
share same internal bus 
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Tag = L + Q0  K0 + Q1  K1 + Q2  K2 + … + Q7  K7 in GF(264) Truncated to 56 bits 
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The MEE cache  
Sweetening the performance degradation impact 

• Walking and processing the full read (write) flow for every 
cache miss can be very time-wise painful 

– E.g., 5 CL for “write”:  [ DATA, MAC, Version, L0, L2, L2 (L3) ] 

 

• Caching frequently used portions can significantly improve the 
performance 
– MEE internal cache holds counters and versions (not data nor data tags) 

– Counters that are retrieved from cache are trusted 

• Read/write flow stops at the cached node 

 

– With a lucky MEE-cache hit at the lowest level: Read operation required 
only one decryption and one MAC operation 
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What about security margins? 

Aren’t 56-bit MAC tags  

against the instinct of any cryptgrapher? 

 

Maybe the 56-bit counters can be rolled over by 
dedicated attack code? 

 

 

 

Worried? 

Let’s define the super adversary model 
RCW 2016, Memory Encryption Engine 19 



 
The super              adversary model 

idealized eavesdropper and forger 

 • Observes ciphertext / MAC tags samples (up to 256) 

– Every observed ciphertext comes from a chosen plaintext 

– Every observed MAC tag comes from a chosen message 

– Spends 0 time (& cost) for storing all the data off platform 

– Collection all at 100% accuracy at highest (CL) granularity 

– Collection time bounded only by platform’s physical throughput 

• Then  

– Tries to gain information on plaintext (of victim applications) 

– Attempts a forgery (1 failure per key set)  reset and repeat  
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Beyond real world capabilities  
but translates the discussion to a cryptographic problem 



Some theorems  
on information theoretic bounds 
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Translated to a “real world crypto” statement 

 

- Collecting many samples (even 256) does not give a significant advantage in 

distinguishing MEE ciphertexts from random 

 

- Collecting many MAC tags samples (even 256) does not improve the forgery 

success probability beyond 1/256 by any meaningful amount 

 

- At 256 samples the game is over (drop-and-lock enforced) 



Putting the crypto bounds to the test 
How many samples can the adversary see? 

• Idealized: collection rate = platform’s physical throughput 

– Can he see 256 ciphertexts? 

– Can he rollover 256 counter? 

– Can he make ~256 MAC tag guesses (try-fail-reboot-try…) 

• Real system’s limitation 

– AES engine throughput: 16B per cycle 

– Field multiplier throughput: 1 GF (264) multiply per cycle 

– 1 Write (CL + Tag) involves at least (with MEE internal cache hit)  

• (4 + 1) AES operations + (8+2) field multiplications 

– @ 2GHz (if overclocked) 

• Idealized sampling rate ≤ 1/10 freq. = 0.2G samples / sec 
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Does an MEE with 56-bit tags and 56-bit 
counters give a sufficient security promise? 

 

• Let’s also assume 1000 “forge-boot” attempts per sec. 

– Above the CPU reset flow latency, but a nice number… 
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• Rollover (serial) would take at best 10.5 years 
• Forgery (parallelizable) would take at best ~2M years 

 
(or, 2 years over 1M machines doing forge-boot constantly) 



Performance impact experiment 

• Security costs   

• MEE overheads: encryption, authentication, tree walk… 

• What is the observed performance impact on applications? 

– The answer depends on multiple factors 

• Experiment:  
– 445.gobmk component of SPECINT2006 v01  

– Selecting 10 input files 

– Compiled the 445.gobmk test with Graphene (library OS), after adapting it to 
run inside an Intel SGX enclave.  

– This test measured (with the 10 input files) under two conditions:  

A. without SGX (hence no MEE involved) B. inside an enclave (i.e., while MEE is active) 

– Comparison gives an estimation for the MEE performance impact 
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Performance estimation experimental results 
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MEE performance impact  

between ~2.2% to ~12%, with average of ~5.5% 

445.gobmk component of SPECINT 2006 (with 10 input files) 

Bars show the performance degradation (in %) incurred by enabling the MEE 



Conclusion 
• MEE is essential to Intel® SGX technology 

– Provides data confidentiality, integrity, replay protection 

• Building a real-word MEE in a real CPU is a formidable 
engineering challenge 
– MEE is based on a careful combination of tailored cryptographic 

primitives operating on a tailored integrity tree data structure  

• Proven security margins even against an idealized adversary 

• Reasonable (tolerable?) performance impact 
 

• More information?  

– A detailed paper will be published 

– I am available for questions, comments and discussions  
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Thank you 



Legal Disclaimer 

 

• The comments and statements are mine and not necessarily Intel’s 

 

• Intel technologies may require enabled hardware, specific software, or 
services activation. Check with your system manufacturer or retailer. 

 

• No computer system can be absolutely secure. Intel does not assume any 
liability for lost or stolen data or systems or any damages resulting from 
such losses. 

 

• © 2016 Intel Corporation 
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