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Background: Oblivious RAM
• Obliviousness: 
• For any fixed size request sequence, the associated storages accesses 

observed (by the cloud) are statistically independent of the requests 

• Techniques 
• Operates on fixed size data blocks 
• Encrypt blocks with ciphertext indistinguishability 
• Dummy accesses, re-encryption, shuffling, etc.
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How close is ORAM to practice?
• Are ORAM designs in line with the constraints of real-world 

cloud services? 

• How close are ORAM techniques to offering practical support to 
cloud applications? 

• Are we on the right track to narrow the gap?



Assumptions in ORAM literature
1. Bandwidth overhead is a good proxy metric 
• So, minimizing it optimizes application performance 

2. Application is not taken into account 
• Implicit assumption that application has no impact on performance

Assumptions influence the way the problem is thought 
about and guide the research agenda.
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ORAM Systems We Built

1. Tree-based: PathORAM 
2. Layered-based: LayeredORAM 
3. Large messages-based: PracticalOS 
4. Partition-based: ObliviStore

1. [PathORAM] Stefanov, Emil, et al. "Path ORAM: An Extremely Simple Oblivious RAM Protocol." CCS 2013.

2. [LayeredORAM] Goodrich, Michael, et al. "Oblivious RAM simulation with efficient worst-case access overhead." 
CCSW 2011.
3. [PracticalOS] Goodrich, Michael, et al. "Practical oblivious storage." CODASPY 2012.

4. [ObliviStore] Stefanov, Emil, and Elaine Shi. "Oblivistore: High performance oblivious cloud storage." S&P 2013.



Application Selection

•We use Filebench: filesystem benchmarking tool 

• Able to emulate several applications, e.g.: 
• Mail server 
• File server 
• Web proxy  
• Web server
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Findings
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Application Traces
• According to slowdown measurements: 
• ObliviStore could easily handle two applications (i.e., varmail and 

webproxy), but could not handle the other two (i.e., webserver and 
fileserver) 

• PathORAM could not handle any of the four applications (it 
experienced slowdowns ranging from 3 to 92) 

• In all cases, the monetary cost of running on top of ORAM was 
roughly 100 times (or more) than running without ORAM



PracticalOS & LayeredORAM
• Neither of the two schemes could support any of the 

applications 

• PracticalOS has a low response time for requests 
• but a long and expensive reshuffling phase 

• The cost of operating PracticalOS for varmail is roughly 15 
USD / min



Main Findings
• Bandwidth overhead is not the bottleneck 
• Network latency is the bottleneck 

• Many real applications require the ORAM to process requests 
concurrently 

• Downloads and uploads do not have the same cost



Asynchronicity & Concurrent Request 
Processing
• ObliviStore can process multiple requests concurrently and 

offer an asynchronous interface 

• Others (e.g., PathORAM) are fundamentally synchronous 
• The current request must be fully completed before the processing of 

the next request can start 

• ORAM schemes do not appear to consider asynchronicity as a 
crucial property 
• 3 out of 39 published papers have this property



Asynchronicity is a MUST!

• Asynchronicity has never been a main design goal. 
• But, we found that: 

1. Asynchronicity is not only desirable but actually necessary 
• No synchronous ORAM scheme can fully support cloud applications 

2. Asynchronicity is difficult 
• E.g., the implementation of ObliviStore did not get it right



Bandwidth Asymmetricity
• S3: the monetary cost of an upload is 12.5 times that of a download
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Bandwidth-only evaluation is INACCURATE!

• Overhead evaluation: total bandwidth only in existing 
literature 
• Bandwidth overhead := download overhead + upload overhead 

• But, experimentally, their performance and monetary cost are 
different 
• Failure to incorporate this experimental insight in our thinking could lead 

us to make incorrect conclusions about how schemes perform in practice 
• Example: which is better? 

• Scheme 1: 20 download overhead, 20 upload overhead 
• Scheme 2: 40 download overhead, 10 upload overhead
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Novel ORAM Framework: CURIOUS
• Based on our findings, we propose CURIOUS 

• Simple design: 
• Flexible due to modular design 
• Simple concurrency model 

• Also, it preserves properties that applications expect from 
cloud 
• e.g., reliability
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• Even though 
• CURIOUS uses 2X the bandwidth of ObliviStore 

• Monetary cost is only half to two-thirds



Conclusions
• Oblivious RAM has come a long way… 
• … and there is a long way to go still… 
• But we found: 
• In theory there is no difference between theory and practice 
• But in practice, there is. 

• Lesson:  
• align theory to practice  
• evaluate theory on practical systems



Open-Source Code (BSD license)
• Our entire system including CURIOUS, the 4 representative 

ORAM schemes (PathORAM, LayeredORAM, PracticalOS, 
ObliviStore), and our evaluation platform is open-source. 

• Uses Amazon S3 as storage backend. 

• Download URL: oblivious-storage.com    

• Contact: bindsch2@illinois.edu

http://www.oblivious-storage.com/

