
Practicing Oblivious Access on Cloud
Storage: the Gap, Fallacy, and the New

Way Forward

Vincent Bindschaedler1, Muhammad Naveed1,3, Xiaorui
Pan2, XiaoFeng Wang2, and Yan Huang2

1University of Illinois at Urbana-Champaign
2Indiana University Bloomington

3Cornell University

Cloud Storage

User Side

A
pplication

Cloud Storage
Service

file1

file4

file2

file3

Cloud Storage

User Side

A
pplication

get(file1)

put(file1, data1)

get(file2)

Cloud Storage
Service

file1

file4

file2

file3

Cloud Storage

User Side

A
pplication

get(file1)

put(file1, data1)

get(file2)

Cloud Storage
Service

file1

file4

file2

file3

Cloud Storage

User Side

A
pplication

get(file1)

put(file1, data1)

get(file2)

Cloud Storage
Service

file1

file4

file2

file3

Leaks access
pattern

Background: Oblivious RAM
• Obliviousness:
• For any fixed size request sequence, the associated storages accesses

observed (by the cloud) are statistically independent of the requests

• Techniques
• Operates on fixed size data blocks
• Encrypt blocks with ciphertext indistinguishability
• Dummy accesses, re-encryption, shuffling, etc.

Oblivious Cloud Storage

Trusted User Side

O
R

A
M

 C
lient

A
pplication

Cloud Storage
Service

Oblivious Cloud Storage

Trusted User Side

O
R

A
M

 C
lient

A
pplication

get(key1)

put(key1, val1)

get(key2)

Cloud Storage
Service

Oblivious Cloud Storage

Trusted User Side

O
R

A
M

 C
lient

A
pplication

get(key1)

put(key1, val1)

get(key2)

Cloud Storage
Servicedownload(object57)

download(object32)

upload(object15, data4)

download(object3)

download(object28)

upload(object65, data19)

download(object11)

download(object44)

upload(object73, data26)

How close is ORAM to practice?
• Are ORAM designs in line with the constraints of real-world

cloud services?

• How close are ORAM techniques to offering practical support to
cloud applications?

• Are we on the right track to narrow the gap?

Assumptions in ORAM literature
1. Bandwidth overhead is a good proxy metric
• So, minimizing it optimizes application performance

2. Application is not taken into account
• Implicit assumption that application has no impact on performance

Assumptions influence the way the problem is thought
about and guide the research agenda.

Contribution

Contribution

Chose 4 representative
ORAM designs

ORAM
Literature

1

Contribution

Chose 4 representative
ORAM designs

ORAM
Literature

1

Build ORAM
Systems

Cloud Storage Evaluation Platform

2

Performance
Data

Ap
p

ORAM

Contribution

Chose 4 representative
ORAM designs

ORAM
Literature

1

Build ORAM
Systems

Cloud Storage Evaluation Platform

2

Performance
Data

Ap
p

ORAM

Contribution

Chose 4 representative
ORAM designs

ORAM
Literature

1

Build ORAM
Systems

New understanding

How ORAMs work
on cloud storage

What real apps
need

3

Cloud Storage Evaluation Platform

2

Performance
Data

Ap
p

ORAM

Contribution

Chose 4 representative
ORAM designs

ORAM
Literature

1

Build ORAM
Systems

New understanding

How ORAMs work
on cloud storage

What real apps
need

3

CURIOUS

(New ORAM Framework)

4

Design

ORAM Systems We Built

1. Tree-based: PathORAM
2. Layered-based: LayeredORAM
3. Large messages-based: PracticalOS
4. Partition-based: ObliviStore

1. [PathORAM] Stefanov, Emil, et al. "Path ORAM: An Extremely Simple Oblivious RAM Protocol." CCS 2013.

2. [LayeredORAM] Goodrich, Michael, et al. "Oblivious RAM simulation with efficient worst-case access overhead."
CCSW 2011.
3. [PracticalOS] Goodrich, Michael, et al. "Practical oblivious storage." CODASPY 2012.

4. [ObliviStore] Stefanov, Emil, and Elaine Shi. "Oblivistore: High performance oblivious cloud storage." S&P 2013.

Application Selection

•We use Filebench: filesystem benchmarking tool

• Able to emulate several applications, e.g.:
• Mail server
• File server
• Web proxy
• Web server

Methodology

Methodology

client

Amazon
S3

bucket extract logs application
tracesFilebench accesses

Methodology

client

Amazon
S3

bucket extract logs application
tracesFilebench accesses

client

PathORAM

ObliviStore

PracticalOS

LayeredORAM

No ORAM

application

varmail

webproxy

webserver

fileserver

Amazon
S3

performance
data

accesses

requests

Findings

Bandwidth overhead as a proxy for response time

Bandwidth overhead as a proxy for response time

Bandwidth overhead as a proxy for monetary cost

Bandwidth overhead as a proxy for monetary cost

Bandwidth overhead as a proxy for monetary cost

PathORAM

Application traces

Time

…

time interval without ORAM

Time

…

time interval with ORAM

• Slowdown := time with ORAM / time without ORAM

Application Traces
• According to slowdown measurements:
• ObliviStore could easily handle two applications (i.e., varmail and

webproxy), but could not handle the other two (i.e., webserver and
fileserver)

• PathORAM could not handle any of the four applications (it
experienced slowdowns ranging from 3 to 92)

• In all cases, the monetary cost of running on top of ORAM was
roughly 100 times (or more) than running without ORAM

PracticalOS & LayeredORAM
• Neither of the two schemes could support any of the

applications

• PracticalOS has a low response time for requests
• but a long and expensive reshuffling phase

• The cost of operating PracticalOS for varmail is roughly 15
USD / min

Main Findings
• Bandwidth overhead is not the bottleneck
• Network latency is the bottleneck

• Many real applications require the ORAM to process requests
concurrently

• Downloads and uploads do not have the same cost

Asynchronicity & Concurrent Request
Processing
• ObliviStore can process multiple requests concurrently and

offer an asynchronous interface

• Others (e.g., PathORAM) are fundamentally synchronous
• The current request must be fully completed before the processing of

the next request can start

• ORAM schemes do not appear to consider asynchronicity as a
crucial property
• 3 out of 39 published papers have this property

Asynchronicity is a MUST!

• Asynchronicity has never been a main design goal.
• But, we found that:

1. Asynchronicity is not only desirable but actually necessary
• No synchronous ORAM scheme can fully support cloud applications

2. Asynchronicity is difficult
• E.g., the implementation of ObliviStore did not get it right

Bandwidth Asymmetricity
• S3: the monetary cost of an upload is 12.5 times that of a download

Bandwidth Asymmetricity
M

ed
ia

n
Re

sp
on

se
 T

im
e

(m
s)

0

30

60

90

120

1KB 2KB 4KB 8KB 16KB 32KB 64KB

GET PUT

• S3: the monetary cost of an upload is 12.5 times that of a download

Bandwidth Asymmetricity
M

ed
ia

n
Re

sp
on

se
 T

im
e

(m
s)

0

30

60

90

120

1KB 2KB 4KB 8KB 16KB 32KB 64KB

GET PUT

• S3: the monetary cost of an upload is 12.5 times that of a download

Bandwidth-only evaluation is INACCURATE!

• Overhead evaluation: total bandwidth only in existing
literature
• Bandwidth overhead := download overhead + upload overhead

• But, experimentally, their performance and monetary cost are
different
• Failure to incorporate this experimental insight in our thinking could lead

us to make incorrect conclusions about how schemes perform in practice
• Example: which is better?

• Scheme 1: 20 download overhead, 20 upload overhead
• Scheme 2: 40 download overhead, 10 upload overhead

CURIOUS

Novel ORAM Framework: CURIOUS
• Based on our findings, we propose CURIOUS

• Simple design:
• Flexible due to modular design
• Simple concurrency model

• Also, it preserves properties that applications expect from
cloud
• e.g., reliability

CURIOUS performs better than ObliviStore
Sl

ow
do

w
n

1

1.75

2.5

3.25

4

varmail webproxy webserver fileserver

ObliviStore CURIOUS

CURIOUS performs better than ObliviStore
Sl

ow
do

w
n

1

1.75

2.5

3.25

4

varmail webproxy webserver fileserver

ObliviStore CURIOUS

• Monetary cost is only half to two-thirds

CURIOUS performs better than ObliviStore
Sl

ow
do

w
n

1

1.75

2.5

3.25

4

varmail webproxy webserver fileserver

ObliviStore CURIOUS

• Monetary cost is only half to two-thirds

CURIOUS performs better than ObliviStore
Sl

ow
do

w
n

1

1.75

2.5

3.25

4

varmail webproxy webserver fileserver

ObliviStore CURIOUS

• Monetary cost is only half to two-thirds

CURIOUS performs better than ObliviStore
Sl

ow
do

w
n

1

1.75

2.5

3.25

4

varmail webproxy webserver fileserver

ObliviStore CURIOUS

• Even though
• CURIOUS uses 2X the bandwidth of ObliviStore

• Monetary cost is only half to two-thirds

Conclusions
• Oblivious RAM has come a long way…
• … and there is a long way to go still…
• But we found:
• In theory there is no difference between theory and practice
• But in practice, there is.

• Lesson:
• align theory to practice
• evaluate theory on practical systems

Open-Source Code (BSD license)
• Our entire system including CURIOUS, the 4 representative

ORAM schemes (PathORAM, LayeredORAM, PracticalOS,
ObliviStore), and our evaluation platform is open-source.

• Uses Amazon S3 as storage backend.

• Download URL: oblivious-storage.com

• Contact: bindsch2@illinois.edu

http://www.oblivious-storage.com/

