
Practical Cryptanalysis of Json Web Token and
Galois Counter Mode’s Implementations

Quan Nguyen (quannguyen@google.com)

Google Information Security Engineer (ISE)

My Job

❖ Conduct security reviews, i.e., play the attacker role mentioned in academic
papers.

Agenda

❖ Json Web Signature/Encryption (go-jose) Security Review

➢ How tricky and complicated RFC design leads to an unsafe implementation

❖ Galois Counter Mode (GCM) Crypto Bugs in OpenSSL GCM’s wrapper,

OpenJDK8, BouncyCastle, Conscrypt

➢ We don’t talk about well-known IV reuse issue but 2 other types of bugs that leak

authentication keys.

➢ GCM is fragile but its implementations were rarely checked.

https://github.com/square/go-jose

Responsible Disclosure

❖ Square Inc. awarded me $5500 for go-jose’s crypto issues.

❖ GCM bugs were reported to upstream developers and were acknowledged in

Nexus Security Bulletin [1], Oracle Critical Patch Update [2], [3]

https://source.android.com/security/bulletin/2016-01-01.html
http://www.oracle.com/technetwork/security-advisory/cpuapr2016v3-2985753.html
http://www.oracle.com/technetwork/security-advisory/cpujul2016-2881720.html

Important Observations

❖ Encryption/Signature signing’ input is mostly under our control

❖ Decryption/Signature verification’ input is always under attacker’s control

Json Web Signature/Encryption

❖ Json tokens that provides (multiple) signatures, ECDH, CBC-HMAC encryption

❖ Square Inc’s go-jose is widely used by Google, Let’s Encrypt, Square Inc, etc

header . payload . signature

https://github.com/square/go-jose

Embedded public key in signature

❖ RFC7515, section 4.1.3: “The ‘JWK’ (JSON Web Key) Header Parameter is the

public key that corresponds to the key used to digitally sign the JWS.”

❖ Attacker can generate private/public key pair and send the public key

together with the signature and make the signature valid. See [jose] High risk

vulnerability in RFC 7515

❖ Design level’s mistake by RFC.

https://mailarchive.ietf.org/arch/msg/jose/gQU_C_QURVuwmy-Q2qyVwPLQlcg
https://mailarchive.ietf.org/arch/msg/jose/gQU_C_QURVuwmy-Q2qyVwPLQlcg
https://mailarchive.ietf.org/arch/msg/jose/gQU_C_QURVuwmy-Q2qyVwPLQlcg

Square’s go-jose embedded public key in
signature

❖ Go-jose’s signing:
➢ Enable embedded ‘JWK’ by default

❖ Go-jose’s verification:
➢ Exposes API to get ‘JWK’ out of signature and uses it for verification.
➢ Does not even check whether ‘JWK’ is a public key; it accepts HMAC key!
➢ Has multiple sample tests to use embedded public key to verify.

❖ Not strictly a library’s vulnerability but easily misused

Go-jose’s ECDH

❖ Checks well-known “Invalid Curve Attack” [1]
❖ To prevent attack: for NIST curves, check whether public key is on the private

key’s curve.
❖ Go-jose, ECDH_ES (ephemeral static ECDH):

➢ Vulnerable
➢ Sender can extract receiver’s private key

[1] Ingrid Biehl, Bernd Meyer, Volker Müller ,“Differential Fault Attacks on Elliptic Curve Cryptosystems”,
CRYPTO 2000

Go-jose’s CBC-HMAC

❖ Found a few integer overflows in 32-bit machine, e.g.:

make([]byte, len(aad)+len(nonce)+len(ciphertext)+8)
binary.BigEndian.PutUint64(buffer[n:], uint64(len(aad)*8))

❖ Note: the correct instruction is uint64(len(aad))*8. uint64(len(aad))*8 makes
the boundary between aad and nonce unambiguous.

❖ Don’t know how to turn integer overflows to remote code execution in go-lang
❖ How to turn integer overflows to HMAC bypass?

aad 16-byte nonce ciphertext uint64(len(aad) * 8)HMAC

Go-jose’s HMAC Auth Bypass Exploitation
HMAC(aad || nonce || ciphertext || uint64(len(aad) * 8))

❖ Denote: buffer = aad || nonce || ciphertext || 64,
❖ Assume attacker observes on the wire aad, nonce, ciphertext with

➢ len(aad) = 8 (hence uint64(len(aad)*8) = 64)
➢ len(nonce) = 16,
➢ len(ciphertext) = 536870928 (doesn’t matter, just large value)

❖ Attacker creates:
➢ newAadSize := 536870920 (hence uint64(newAadSize*8) = 64 because of integer overflow)
➢ newAad := buffer[:newAadSize]
➢ newNonce := buffer[newAadSize : newAadSize+16]
➢ newCiphertext := buffer[newAadSize+16:]

❖ The attacker can create a new set of aad, nonce, ciphertext (and hence plaintext) with valid HMAC
without knowing the HMAC key.

aad nonce ciphertext 64

newAad newNonce newCiphe
rtext

64

Buffer

Buffer

||

Go-jose’s Multiple Signatures Verify()

for _, signature := range obj.Signatures {
...
err := verifier.verifyPayload(input, signature.Signature, alg) (1)
if err == nil {
 return obj.payload, nil
}

}
(1): If one of the signatures is valid; Verify() method returns the payload

Go-jose’s Multiple Signatures

❖ If one of the signatures is valid; Verify() method returns the payload

❖ What’s wrong?
➢ The signature not only covers the payload but also covers the integrity of

protected header.

header . payload . signature

Exploitation
1. Attacker observes a protected header and payload with valid signature.
2. Attacker creates multiple signatures:

a. The 1st one with invalid protected header (e.g. a new JWK public key)
with invalid signature.

b. The 2nd one has valid protected header and valid signature that he
captured in step 1.

3. The victim calls Verify() method, the method returns no error because the
2nd signature is valid; the victim starts using the attacker-injected 1st protected
header.

 {“payload”:”...”, “signatures”:
 [{“protected”:”jwk RSA key”, “payload”:”...”, “header”:{“kid”:”...”},
 “signature”:”Invalid signature”},
 {“protected”:”...”, “header”:{“kid”:”...”}, “signature”: “valid signature”}]}

Galois Counter Mode

❖ Authenticated Encryption With Associated Data (AEAD)
❖ GCM is fragile but its implementations were rarely checked.

Galois Counter Mode

Encryption Key: K

Authentication key: H = E(K, 0128)

Counter : Y0 = IV -12 bytes || 0311

Plaintext: P[0] 16- byte P[1] 16-byte

Ciphertext: C[0] = P[0] ⊕ E(K, (Y0 + 1) % 232)

 C[1] = P[1] ⊕ E(K, (Y0 + 2) % 232)

Finite Field GF(2128): polynomial modulo 1 + x + x2 + x7 + x128, operation *

Authentication tag : (((C[0]*H ⊕ C[1]) * H) ⊕ length(P)) * H ⊕ E(K, Y0)

 = C[0]*H3 ⊕ C[1]*H2 ⊕ length(P)*H⊕ E(K, Y0)

OpenSSL GCM’s Wrapper

Safe code:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, auth_tag.data());

Vulnerable code:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, auth_tag.size(), auth_tag.data());

 auth_tag is what you get on the wire; it’s under attacker’s control.

 Auth. Tag Truncation Attack: Attacker sends 1 byte auth_tag

GCM’s Wrapped Around Counter

❖ Y0 = IV -12 bytes || 0311

❖ C[0] = P[0] ⊕ E(K, (Y0 + 1) % 232)

❖ C[1] = P[1] ⊕ E(K, (Y0 + 2) % 232)

❖ After 232 blocks, the counter will be wrapped around causing counter collision
→ leaks plaintext and authentication key.

❖ This is different from usual IV-reuse issue because it happens even if users
use different IVs.

OpenSSL, BouncyCastle, Conscrypt, OpenJDK8

❖ OpenSSL ✓
❖ Conscrypt ✓
❖ BouncyCastle x
❖ OpenJDK8 x
❖ BouncyCastle & OpenJDK8 missed the critical security check:

➢ Especially dangerous in Java Cipher streaming API.

Classic Timing Vulnerability in OpenJDK8

for (int i = 0; i < tagLenBytes; i++)

 if (computedTag[i] != expectedTag[i])

 throw new AEADBadTagException("Tag mismatch!");

Authentication bypass once is not interesting; attacker wants authentication key

Classic Timing Vulnerability in OpenJDK8

❖ Authentication bypass once is not interesting; attacker wants authentication
key

❖ Joux’s “Forbidden IV” Attack [1]
➢ Encryption’s input is under our (users) control
➢ NOT exploitable in practice, unless users shoot themselves in the foot
➢ NIST fixed it since 2007

❖ Decryption’s input is under attackers control
➢ Exploitable in practice

[1] Antoine Joux. “Authentication Failures in NIST version of GCM”. NIST Comment, 2006

Attacker chooses collided IVs in decryption

❖ Sends 2 pairs with collided IV to decryption oracle:
➢ (IV, C1)
➢ (IV, C2)
➢ length(C1) = length(C2) = 16
➢ C1 ⊕ C2 = 1

❖ In particular: IV= 016, C1 = 016, C2 = 0151
❖ Use previous timing-attack to figure out the auth tags authTag1 of (IV, C1),

authTag2 of (IV, C2)

Attacker chooses collided IVs in decryption

 authTag1 = E(K, Y0) ⊕ (C1*H2 ⊕ length(C1)*H)

 authTag2 = E(K, Y0) ⊕ (C2*H2 ⊕ length(C2)*H) where H is authentication key

 authTag1⊕ authTag2 = (C1 ⊕ C2) * H2 = 1.H2 = H2

 Finding a square root in GF(2128) is enough to find H. Happy hacking!

Extra Bugs

GCM Short Tag Attack

❖ Short tag attack [1] → leaks authentication key

❖ Safe default should be 16-byte auth tag

[1] Niels Ferguson. “Authentication weaknesses in GCM”. NIST Comment, 2005

Check safe default

❖ Golang: 16-byte ✓
❖ BoringSSL: 16-byte ✓
❖ Conscrypt x

➢ cipher.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(key, AES), new
IvParameterSpec(encryptCounter));

➢ Uses 12-byte auth tag
➢ Cites RFC 5084. Whose fault?

❖ Search for “RFC 5084”; found a few more instances of it.

References
1. David A. McGrew and John Viega. “The Security and Performance of the

Galois/Counter Mode (GCM) of Operation (Full Version)”. INDOCRYPT 2004
2. Niels Ferguson. “Authentication weaknesses in GCM”. NIST Comment, 2005
3. Antoine Joux. “Authentication Failures in NIST version of GCM”. NIST Comment, 2006.
4. Morris Dworkin. NIST Special Publication 800-38D. 2007
5. Ingrid Biehl, Bernd Meyer, Volker Müller ,“Differential Fault Attacks on Elliptic Curve

Cryptosystems”, CRYPTO 2000
6. M. Jones, J. Bradley, N. Sakimura. RFC 7515. May 2015
7. M. Jones, J. Hildebrand. RFC 7516. May 2015
8. Square Inc’s go-jose. https://github.com/square/go-jose
9. Tim McLean. “Critical vulnerabilities in JSON Web Token libraries” .

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Thanks for your attention!

Acknowledgements

It’s my honor to work with and to learn from cryptanalysts Thai Duong and Daniel
Bleichenbacher.

