Can You Trust Your Encrypted Cloud?
An Assessment of SpiderOakONE's Security

Anders Dalskov Claudio Orlandi

Aarhus University

RWC 2018

Agenda

» A Threat Model for Encrypted Cloud Storage (ECS).
> A high-level look into a modern ECS service SpiderOakONE.

» Attacks on SpiderOakONE and what we can learn from them.

Agenda

» A Threat Model for Encrypted Cloud Storage (ECS).
> A high-level look into a modern ECS service SpiderOakONE.

» Attacks on SpiderOakONE and what we can learn from them.

Disclaimer: All issues were reported on June 5th 2017 responsibly, and are
fixed in version 6.4.0 of SpiderOakONE.

(Password) Encrypted Cloud Storage

Traditional Cloud Storage raises some privacy concerns:

(Password) Encrypted Cloud Storage

Traditional Cloud Storage raises some privacy concerns:

» Besides us, who can read our files?

(Password) Encrypted Cloud Storage

Traditional Cloud Storage raises some privacy concerns:
> Besides us, who can read our files?

» What happens to the files we delete? Or when we close our account?

(Password) Encrypted Cloud Storage

Traditional Cloud Storage raises some privacy concerns:
> Besides us, who can read our files?
» What happens to the files we delete? Or when we close our account?

» What if the Cloud Storage company is sold?

(Password) Encrypted Cloud Storage

Traditional Cloud Storage raises some privacy concerns:
> Besides us, who can read our files?
» What happens to the files we delete? Or when we close our account?
» What if the Cloud Storage company is sold?

Solution: Encrypt files on the client before sending them to the server.

Threat Model

ECS should provide more security than Traditional Cloud Storage:
We want our files to stay secure even if the server turns malicious.

Threat Model

ECS should provide more security than Traditional Cloud Storage:
We want our files to stay secure even if the server turns malicious.

ECS providers seem to agree:

>

>

>

Tresorit: We believe you should never have to ‘trust’ a cloud service
LastPass: No one at LastPass can ever access your sensitive data.
sync: We can’t read your files and no one else can either

pCloud: No one, even pCloud’s administrators, will have access to your
content

SpiderOak: No Knowledge means we know nothing about the encrypted
data you store on our servers

Threat Model

But is a “malicious server” threat model actually used?

Threat Model

But is a “malicious server” threat model actually used? For example,
SpiderOak wrote (after we'd disclosed the issues we found):
When we started building SpiderOak in 2006, the threat model was an
attacker who would want to compromise SpiderOak and steal customer
data [..] Because this was a legacy mindset, the SpiderOak ONE
backup code base is not robust against a different kind of threat model:
SpiderOak, the company, as the active attacker

Threat Model

But is a “malicious server” threat model actually used? For example,
SpiderOak wrote (after we'd disclosed the issues we found):
When we started building SpiderOak in 2006, the threat model was an
attacker who would want to compromise SpiderOak and steal customer
data [..] Because this was a legacy mindset, the SpiderOak ONE
backup code base is not robust against a different kind of threat model:

SpiderOak, the company, as the active attacker

Previous work that has examined ECS (SpiderOakONE in particular):
> Bhargavan et al (2012): External adversary. CSRF in web interface that
could be used to learn location of shared files.

» Wilson & Ateniese (2014): Only considers file sharing. Found that the
server can read files shared by the user.

Threat Model—OQOur attempt

Assume an honest client (client software obtained before server turns
malicious).

https://eprint.iacr.org/2017/570

Threat Model—OQOur attempt

Assume an honest client (client software obtained before server turns
malicious).

Informally, we try to answer the questions:

https://eprint.iacr.org/2017/570

Threat Model—OQOur attempt

Assume an honest client (client software obtained before server turns
malicious).

Informally, we try to answer the questions:

1. Are we secure against a passive adversary? l.e. is the client’s default
behaviour secure?

https://eprint.iacr.org/2017/570

Threat Model—OQOur attempt

Assume an honest client (client software obtained before server turns
malicious).

Informally, we try to answer the questions:

1. Are we secure against a passive adversary? l.e. is the client’s default
behaviour secure?

2. Are we secure against an active adversary? Is the protocols secure against
misuse? What about the client implementation?

https://eprint.iacr.org/2017/570

Threat Model—OQOur attempt

Assume an honest client (client software obtained before server turns
malicious).

Informally, we try to answer the questions:

1. Are we secure against a passive adversary? l.e. is the client’s default
behaviour secure?

2. Are we secure against an active adversary? Is the protocols secure against
misuse? What about the client implementation?

Formally: Indistinguishability experiment between an oracle (client) and
adversary (server).

Our definition only considers confidentiality. Refer to our paper for the details:
https://eprint.iacr.org/2017/570

https://eprint.iacr.org/2017/570

SpiderOakONE—Quick facts

SpiderOakONE is an ECS with praise/endorsements from both Edward
Snowden and the EFF.

Uses “No Knowledge' (and “Zero Knowledge' before that) to describe their
encryption routines.

» Supports Windows, Mac and Linux (partial support for Android and iOS),
> File sharing (single files and whole directories),

> Written in Python — decompilation is easy,

> Certificate Pinning + TLS = limits scope of attacks.

Our review focused on version 6.1.5, released July 2016.

SpiderOakONE—Communication

Client Server
Input: password pw
protocol 1D pid

Abort if invalid pid
Auth with protocol identified by pid

RPC fi(x1, ..., Xn)

v=filx, ..., x)

store/process v

SpiderOakONE—Communication

Client Server
Input: password pw

protocol 1D pid

Abort if invalid pid
Auth with protocol identified by pid

RPC fi(x1, ..., Xn)

v=filx, ..., x)

store/process v

Authentication:
> Only run on first install.
> Server picks what protocol to run. (4 possible, but only 2 were observed.)

» All protocols are non-standard (i.e. “home-made”).

SpiderOakONE—Communication

Client
Input: password pw

Server

protocol 1D pid

Abort if invalid pid
Auth with protocol identified by pid

RPC fi(x1, ..., xn)

v=filx, ..., x)
v

store/process v

Authentication:

> Only run on first install.

> Server picks what protocol to run. (4 possible, but only 2 were observed.)
> All protocols are non-standard (i.e. “home-made”).

RPC:

» Everything else (data transfer, device stats, etc.)

» Comprehensive: Server can call =~ 90 different procedures on the client.

SpiderOakONE—Encryption

User files:
» File F is encrypted with ke = H(F || mk);
> kg is encrypted with a per-directory key dk;;

» dk; is encrypted with a per-account long-term
key;

> long-term keys are encrypted with
k = KDF(pw).

Password pw

|

Long-term keys
(mk and others)

/N

dky

SpiderOakONE—Encryption

User files:
» File F is encrypted with ke = H(F || mk);
> kg is encrypted with a per-directory key dk;;
» dk; is encrypted with a per-account long-term
key;
> long-term keys are encrypted with
k = KDF(pw).

Password changes: A password change only
triggers re-encryption of the long-term secrets.
l.e. no “future secrecy”.

Password pw

|

Long-term keys
(mk and others)

/N

dky

Attacks

We found 4 different issues that can be leveraged for attacks on the client:

> 1 attack weakens the security of a hash derived from the user’s password
(we'll skip this);

> 2 attacks recover the user's password—one is completely silently!

» 1 attack can in some situations recover files that are not supposed to be
shared (during sharing of other files).

All but the last attack is active.

Verification: All attacks was implemented and verified to work against version
6.1.5 of SpiderOakONE.

Password recovery

Recall: 2 authentication protocols were seen, yet 4 can be run.

Password recovery

Recall: 2 authentication protocols were seen, yet 4 can be run.

Client Server
Input: pw Input: /st list of RSA
public-keys, chl
random string
Ist, chl

Display FP(Ist) to
user. Continue if user
accepts
a = LE(pw, Ist, chl)

» FP(Ist) computes a “fingerprint” on Ist using RFC1751;

> LE(pw, Ist, chl) computes a “layered encryption” of pw and Ist using keys
from Ist. l.e.

a = Encpi, (Encpx,_, - - - (Encpig (pw || chl))).

Password recovery

Recall: 2 authentication protocols were seen, yet 4 can be run.

Client Server
Input: pw Input: /st list of RSA
public-keys, chl
random string
Ist, chl

Display FP(Ist) to
user. Continue if user
accepts
a = LE(pw, Ist, chl)

» FP(Ist) computes a “fingerprint” on Ist using RFC1751;

> LE(pw, Ist, chl) computes a “layered encryption” of pw and Ist using keys
from Ist. l.e.

a = Encpi, (Encpx,_, - - - (Encpig (pw || chl))).

Issue: Server can pick pk; s.t. it knows sk;, which lets it recover pw from a.

Password recovery

FP(Ist) changes when Ist changes. But what should the user compare the
fingerprint to?

Password recovery

FP(Ist) changes when Ist changes. But what should the user compare the
fingerprint to? TOFU:

If your SpiderOakONE Administrator has given you a fingerprint phrase
and it matches the fingerprint below, or if you have not been given
a fingerprint, please click “Yes” below. Otherwise click “No” and

contact your SpiderOakONE Administrator.

l.e. if the user does not have anything to compare FP(Ist) against, then they

should just accept.

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server;

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another;

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

Scenario 1:
1. Directory D with files F1, F,. .., Fy;
2. Move F; to D’ and then share D;

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

Scenario 1:
1. Directory D with files F1, F,. .., Fy;
2. Move F; to D’ and then share D;

3. But, F; is encrypted with dkp
(obs. 2), which server knows (obs. 1);

4. Server can recover F;.

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

Scenario 1: Scenario 2:
1. Directory D with files F1, F,. .., Fy; 1. Directory D with files F1,..., F, is
2. Move F; to D’ and then share D; shared (server knows dkp);
3. But, F; is encrypted with dkp 2. Sharing of D ceases;

(obs. 2), which server knows (obs. 1); 3. File Foy1 is added to D;

4. Server can recover F;.

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

Scenario 1:
1. Directory D with files F1, F,. .., Fy;
2. Move F; to D’ and then share D;

3. But, F; is encrypted with dkp
(obs. 2), which server knows (obs. 1);

4. Server can recover F;.

Scenario 2:

1.

Directory D with files F1,..., F, is
shared (server knows dkp);

2. Sharing of D ceases;

«

File F,11 is added to D;

4. But, dkp was not invalidated in

step 2 (obs. 3) = Fy,;1 is also
encrypted under dkp;

. Server can recover Fpy.

File recovery via. directory sharing (ShareRooms)

Observations: (1) sharing directory D happens by revealing dkp (the directory
key) to the server; (2) file encryptions are not updated when moving a file from
one directory to another; and (3) directory keys are never rotated.

Scenario 1: Scenario 2:
1. Directory D with files F1, F,. .., Fy; 1. Directory D with files F1,..., F, is
2. Move F; to D’ and then share D; shared (server knows dkp);
3. But, F; is encrypted with dkp 2. Sharing of D ceases;

«

File F,11 is added to D;

4. Server can recover F;. 4. But, dkp was not invalidated in
step 2 (obs. 3) = Fy,;1 is also
encrypted under dkp;

(obs. 2), which server knows (obs. 1);

5. Server can recover Fpy1.

In both scenarios, files are recovered that the user took specific steps to avoid
sharing.

Password recovery (again)

After installation, the user's password is stored in plaintext on the user's
machine. (This avoids the user having to input it on every boot.)

Password recovery (again)

After installation, the user's password is stored in plaintext on the user's
machine. (This avoids the user having to input it on every boot.)

RPC methods exist that, on input a file path, will return the file's content if
the file path matches a regular expression.

Password recovery (again)

After installation, the user's password is stored in plaintext on the user's
machine. (This avoids the user having to input it on every boot.)

RPC methods exist that, on input a file path, will return the file's content if
the file path matches a regular expression.

The file path for the file containing the user's password matches this regular
expression.

Password recovery (again)

After installation, the user's password is stored in plaintext on the user's
machine. (This avoids the user having to input it on every boot.)

RPC methods exist that, on input a file path, will return the file's content if
the file path matches a regular expression.

The file path for the file containing the user's password matches this regular
expression.

Attack: The server can just “ask” the client to send the user’s password.

My 5 cents on secure application design

» Complexity. Many RPC methods and different authentication protocols
create a large attack surface.

My 5 cents on secure application design

» Complexity. Many RPC methods and different authentication protocols
create a large attack surface.

> Same secret for both authentication and encryption. All active attacks we
found were the result of using the same secret (the password) for both
encryption and authentication.

My 5 cents on secure application design

» Complexity. Many RPC methods and different authentication protocols
create a large attack surface.

> Same secret for both authentication and encryption. All active attacks we
found were the result of using the same secret (the password) for both
encryption and authentication.

» Different execution contexts. The client should avoid making assumptions
about the user.

Wrapping up

Talk Summary:
» Motivation for Encrypted Cloud Storage and its security requirements;

» A Threat Model for ECS. Specifically, security in the presence of an either
passive or active malicious server;

» Examples of how security in a real ECS (SpiderOakONE) breaks down
when the server turns malicious.

Wrapping up

Talk Summary:
» Motivation for Encrypted Cloud Storage and its security requirements;

» A Threat Model for ECS. Specifically, security in the presence of an either
passive or active malicious server;

» Examples of how security in a real ECS (SpiderOakONE) breaks down
when the server turns malicious.

Concluding remark:
ECS is intended to provide more, in terms of security, than traditional Cloud
Storage, and the Threat Model should reflect this fact.

