Bloom Filter Encryption and Applications to Efficient
Forward-Secret 0-RTT Key Exchange

David Derler?, Tibor Jager!l, Daniel Slamanig?, Christoph Striecks®
January 12, 2018 —RWC 2018, Zurich, Switzerland

i I §
ﬁ PADERBORN I
-IG-rLa‘z'- lg‘ UNIVERSITY AI SPSTRAN NS TVTE



Key Establishment with TLS

\ ClientHello, ClientKeyShare

C“ent ServerHello, ServerKeyShare Ser\/er

<

Cert, Signature, Finished

<

Finished

@ Payload




Key Establishment with TLS

SYN
..................... >
< SYN-ACK
ACK
_____________________ )
\ ClientHello, ClientKeyShare
C“ent < ServerHello, ServerKeyShare Server

Cert, Signature, Finished

Finished

@ Payload




Key Establishment with TLS

A
114-L

\ ClientHello, ClientKeyShare

C“ent |E ServerHello, ServerKeyShare Ser\/er
o

- Cert, Signature, Finished

Finished

@ Payload

> 2-RTTs before first payload message
? Is this necessary




Key Establishment with TLS

n
)
_'
_'
\ ClientHello, ClientKeyShare
C“ent '}: < ServerHello, ServerKeyShare Server
o
- < Cert, Signature, Finished
Finished N
@ Payload

\ 2

> 2-RTTs before first payload message
? Is this necessary




We want to send cryptographically protected
payload in first message (0-RTT KE)



Trivial Protocol

(@, &)
¢ < Enca(R)
N p < SymEnc,(Payload)
Client Server

Major deficiencies:

- No forward secrecy

- Vulnerable to replay attacks
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0-RTT in TLS1.3/QUIC

- First session 1-RTT, session resumption 0-RTT
« Replay protection
? Forward secrecy for most transmitted data

Full forward secrecy, replay protection, and 0-RTT?

- A priori not even clear if possible
& Gunther, Hale, Jager, and Lauer at EUROCRYPT'17
> Using puncturable encryption (Green, Miers. S&P 2015)
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Conventional encryption scheme:

- (KeyGen, Enc, Dec)
+ Additional algorithm &’ < Punc(&, C)

Properties

- &/ no longer useful to decrypt C
- &/ still useful to decrypt other ciphertexts
- Repeated puncturing possible

O-RTT KE via Puncturable Encryption

- Client encrypts message under public key @
- Server decrypts using secret key &'
- Server punctures &' on C
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Our Approach

Downsides of existing approaches

- Puncturing and/or decryption expensive

(experiments by authors of [GHJL17]: 30s - several minutes)
Observation

- Can accept somewhat larger (secret) keys

- Can accept non-negligible correctness error
- For example, 1 in 1000 sessions fail

> Can fall back to 1-RTT in this case
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Bloom Filters

{x v, 2}
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Properties

- No false negatives v?
- False positives possible
- Probability determined by k, m, and # inserted elements
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Setup
- Set up BF

- Associate key pair to each bit
- Compose BFE key pair (&, @)
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1 Secret key no longer useful to
decrypt C.» with associated tag
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Puncture ciphertext C,/

- Determine BF indexes from 7/
- Delete associated keys
- Update BF state
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'Decrypt ciphertext C,

- Determine BF indexes from 7
- Let i lowest index w. BF[i] = 0
* M« Decg,(C;)




Example BF Parameters

We let

+ Maximum # of elements in BF; 22°
~ 2" puncturings/day for full year

- False positive probability: 1073
Then we get

- BF size m = ninp/(in2)2 ~ 2MB
- # hash functions k = [m/nIn2] =10
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Based on Boneh-Franklin IBE

- Constant size public key (400 bit at 120 bit security)
- Identity per BF position
- Secret key: include one IBE-& per identity
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Instantiations

Based on Boneh-Franklin IBE

- Constant size public key (400 bit at 120 bit security)
- Identity per BF position
- Secret key: include one IBE-& per identity

- Ciphertext

> k Boneh-Franklin ciphertexts w. shared rand.

> Use hashed variant to save space

> Size O(R)

~ 3000 bit (120 bit security, parameters from before)

- Secret key size ~700MB (parameters from before)
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CCA security?

- Requires additional technicalities

- Details in the paper (EUROCRYPT'18; preprint will follow soon)
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Instantiations contd’

CCA security?

- Requires additional technicalities

- Details in the paper (EUROCRYPT'18; preprint will follow soon)
Constant size ciphertexts?

- Adaptively secure small universe ABE

- Constant size ciphertexts ABE
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Instantiations contd’

Extensions

- Time-based BFE (TBBFE)
- Enable multiple time intervals
- Similar approach as [GM15,GHJL17]

Other instantiations?

- Potentially many other possible instantiations

(work in progress)
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Conclusions

Existing approaches

- Most critical ops expensive (puncturing & decryption)
! Authors of [GHJL17] report 30s to minutes

Our approach

v Offload expensive ops to less critical phases
(key generation, resp. switch of time interval for TB)
v Very efficient decryption (=~ ElGamal in Gr)
« Only deletions & hash evaluations upon puncture
« Conjectured dec. & punc. times in order of milliseconds
« Applications of BFE beyond 0O-RTT KE
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Next steps?

> Real world implementation and deployment

¥ @dderler  @tiborjager  @drl3c7er  @CStriecks


https://twitter.com/dderler
https://twitter.com/tibor_jager
https://twitter.com/drl3c7er
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