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Cache-based covert channel
● Memory access patterns affect data cache state
● Cache state affects memory access timing
● Measuring access timings reveals information about memory access patterns

○ here: FLUSH+RELOAD

● Normally used as side channel
● Other covert channels exist



Speculative and Out-of-Order Execution,
Branch Prediction
● Instructions can be executed in a different order and in parallel
● Branches are predicted before the target is known

1 if (foo_array[index1] ^ foo_array[index2] == 0) {
2 result = bar_array[100];
3 } else {
4 result = bar_array[200];
5 }



Misspeculation
● Exceptions and incorrect branch prediction can cause “rollback” of transient 

instructions
● Old register states are preserved, can be restored
● Memory writes are buffered, can be discarded
● Cache modifications are not restored!



Covert channel out of misspeculation
● Sending via cache-based covert channel works from transient instructions

branch / faulting instruction

transient instructions architecturally executed 
instructionscache-based

covert channel

architectural
control flowpredicted target



Variants overview
MeltdownSpectre

● CVE-2017-5753
● "Variant 1"
● "Bounds Check 

Bypass"

● Primarily affects 
interpreters/JITs

● CVE-2017-5715
● "Variant 2"
● "Branch Target 

Injection"

● Primarily affects 
kernels/hypervisors

● CVE-2017-5754
● "Variant 3"
● "Rogue Data Cache 

Load"

● Affects kernels (and 
architecturally 
equivalent software)



if (x < array1_size)
   y = array2[array1[x] * 256];

Variant 1: Conditional Branch Example

○ Execution without speculation is safe
■ CPU will never read array1[x] for any x ≥ array1_size

○ Execution with speculation can be exploited
■ Attacker sets up some conditions

● train branch predictor to assume ‘if’ is likely true

● make array1_size and array2[] uncached

○ Invokes code with out-of-bounds x such that array1[x] is a secret
■ NOTE: This read changes the cache state in a way that depends on the value of array1[x]

■ … recognizes its error when array1_size arrives, restores its architectural state, 
and proceeds with ‘if’ false

○ Attacker detects cache change (e.g. basic FLUSH+RELOAD or EVICT+RELOAD)
■ E.g. next read to array2[i*256] will be fast i=array[x] since this got cached



JavaScript code runs in a sandbox
↘ Not permitted to read arbitrary memory
↘ No pointers, array accesses are bounds checked

Browser runs JavaScript from untrusted websites
↘ JavaScript engine can interpret code (slow) or compile it (JIT) to run faster
↘ In all cases, engine must is required to ensure sandbox (e.g. apply bounds checks)

Speculative execution can blast through safety checks…
↘ Can we write JavaScript that compiles into machine code that leaks memory contents?

Variant 1: Violating the JavaScript Sandbox



Variant 1: Violating JavaScript’s Sandbox

index will be in-bounds on training passes,
and out-of-bounds on attack passes

Teach JIT that index is in bounds for simpleByteArray[] so it 
can omit bounds check in next line.  Want length uncached for 
attack passes

Do the out-of-bounds read on attack passes!

This AND keeps the JIT from adding 
unwanted bounds checks on the next 
line

Leak out-of-bounds read result into cache 
state!

Need to use the result so the 
operations aren’t optimized 
away

“|0” is a JS optimizer 
trick 
(makes result an 
integer)

4096 bytes (= page size)

1
2
3
4
5

if (index < simpleByteArray.length) {
  index = simpleByteArray[index | 0];
  index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;
  localJunk ^= probeTable[index|0]|0;
}



Variant 2: Basics
● Branch predictor state is stored in a Branch Target Buffer (BTB)

○ Indexed and tagged by (on Intel Haswell):
■ partial virtual address
■ recent branch history fingerprint

● Branch prediction is expected to sometimes be wrong
● Unique tagging in the BTB is unnecessary for correctness
● Many BTB implementations do not tag by security domain
● Prior research: Break Address Space Layout Randomization (ASLR) across 

security domains
● Inject misspeculation to controlled addresses across security domains



Variant 2: Exploitation against KVM
● break hypervisor ASLR using branch prediction
● misdirect first indirect call with memory operand after guest exit
● flush cache line containing memory operand
● guest register state stays across VM exit
● guest memory is mapped
● abuse eBPF bytecode interpreter; call through register-loading gadget

ffffffff81514edd: mov    rsi,r9
ffffffff81514ee0: call   QWORD PTR [r8+0xb0]

static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)



Meltdown / Variant 3

i = *pointer;
y = i * 256;
z = array2[y];
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Meltdown / Variant 3
● Privilege checks for memory access based on pagetable entries
● Privilege checks can be performed asynchronously
● Dependent instructions can execute before execution is aborted!
● Race condition in the privilege check
● Straightforward attack: Leak cached data
● TU Graz result: Uncached data can also be leaked
● Suppression of architectural pagefault:

○ signal handler
○ TSX
○ mispredicted branch



Conclusion
● Covert channels in CPUs are useful for more than transferring secrets 

between isolated processes
● Not all security issues are correctness issues
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